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A POLYNOMIAL OPTIMIZATION APPROACH TO
PRINCIPAL–AGENT PROBLEMS

BY PHILIPP RENNER AND KARL SCHMEDDERS1

This paper presents a new method for the analysis of moral hazard principal–agent
problems. The new approach avoids the stringent assumptions on the distribution of
outcomes made by the classical first-order approach and instead only requires the
agent’s expected utility to be a rational function of the action. This assumption allows
for a reformulation of the agent’s utility maximization problem as an equivalent system
of equations and inequalities. This reformulation in turn transforms the principal’s util-
ity maximization problem into a nonlinear program. Under the additional assumptions
that the principal’s expected utility is a polynomial and the agent’s expected utility is
rational in the wage, the final nonlinear program can be solved to global optimality.
The paper also shows how to first approximate expected utility functions that are not
rational by polynomials, so that the polynomial optimization approach can be applied
to compute an approximate solution to nonpolynomial problems. Finally, the paper
demonstrates that the polynomial optimization approach extends to principal–agent
models with multidimensional action sets.

KEYWORDS: Principal–agent model, moral hazard, polynomial optimization, first-
order approach.

1. INTRODUCTION

IN MORAL HAZARD PRINCIPAL–AGENT PROBLEMS, the principal maximizes her
expected utility subject to two constraints involving the agent’s utility function,
a participation constraint and an incentive-compatibility constraint. The par-
ticipation constraint is rather straightforward; it just imposes a lower bound
on the agent’s expected utility. The incentive constraint, on the other hand, in-
volves the agent’s utility maximization problem. As a consequence, principal–
agent problems are a type of bilevel optimization problems,2 a class of opti-
mization problems that are notoriously difficult. The most popular solution

1We thank the co-editor and three anonymous referees for insightful reports. We are in-
debted to Eleftherios Couzoudis, Johannes Horner, Ken Judd, Diethard Klatte, Felix Kubler,
Rida Laraki, George Mailath, Steve Matthews, Walt Pohl, Andy Postlewaite, Gregor Reich, Che-
Lin Su, and Rakesh Vohra for helpful discussions on the subject. We thank seminar audiences at
the University of Zurich, the 2012 Cowles Summer Conference on Economic Theory, the 2012
ICE Conference at the Becker Friedman Institute, the University of Mannheim, the University
of Trier, and the 2014 Initiative for Computational Economics at the Hoover Institution for com-
ments. We are very grateful to Janos Mayer for detailed comments on earlier versions. Philipp
Renner and Karl Schmedders gratefully acknowledge financial support from SNSF Grant 148769
and the Swiss Finance Institute, respectively.

2The major feature of bilevel optimization problems is that they include two mathematical
programs in a single optimization problem. One of the mathematical programs is part of the con-
straints of the other one. This hierarchical relationship is expressed by calling the two programs
the lower-level and the upper-level problem, respectively. In the principal–agent problem, the
agent’s problem is the lower-level and the principal’s problem is the upper-level problem.
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approach to principal–agent problems is the first-order approach, which re-
places the agent’s maximization problem by the corresponding first-order con-
dition and leads to an optimization problem for the principal that is more
tractable. Unfortunately, this approach requires very restrictive assumptions
on the probability distribution of outcomes, which fail to hold in many eco-
nomic applications.3 A more widely applicable solution approach for principal–
agent problems is obviously desirable.

In this paper, we present a new method for the analysis of moral hazard
principal–agent problems. The new approach avoids the stringent assumptions
on the distribution of outcomes made by the classical first-order approach and
instead only requires the agent’s expected utility to be a rational function of the
action. This assumption enables us to apply ideas from polynomial optimiza-
tion and, similarly to the first-order approach, to transform the principal’s util-
ity maximization problem from a bilevel optimization problem to a nonlinear
program. For the special but standard case of univariate effort, we obtain an
equivalent reformulation. For nonpolynomial problems with one-dimensional
effort, we show how to apply the polynomial optimization approach by first
approximating nonpolynomial functions with Chebyshev polynomials. Finally,
we show how to develop a relaxed reformulation for the model with multi-
dimensional effort and demonstrate that the objective function value of the
relaxation converges to the optimal value and that its solution converges to an
optimal solution of the original problem.

For principal–agent problems with a one-dimensional effort set for the
agent, our assumption that the agent’s expected utility function be rational
in effort allows us to employ the global optimization approach for rational
functions of Jibetean and De Klerk (2006). We transform the agent’s ex-
pected utility maximization approach into an equivalent semidefinite program-
ming (SDP) problem via a sum of squares representation of the agent’s utility
function. Semidefinite programs are a special class of convex programming
problems which can be solved efficiently both in theory and in practice; see
Vandenberghe and Boyd (1996) and Boyd and Vandenberghe (2004). We can
further reformulate the constraints of the SDP into a set of inequalities and
equations, thereby transforming the principal’s bilevel optimization problem
into a “normal” nonlinear program. The additional assumptions that all ob-
jective functions and constraints are rational, that the action set is an interval,
and that the set of wages is compact, imply that the resulting problem is a
polynomial optimization problem, which is globally solvable. We can then use
the methods implemented in GloptiPoly (see Henrion, Lasserre, and Löfberg
(2009)) to find a globally optimal solution to the principal–agent problem. That
is, we can obtain a numerical certificate of global optimality.

3In economic applications, the first-order approach is then often just assumed to be applicable.
In that case, of course, the resulting conclusions may or may not be valid. Needless to say, this
custom is rather unsatisfactory.
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The first-order approach, a widely used solution method for principal–
agent problems, replaces the incentive-compatibility constraint that the agent
chooses a utility-maximizing action, by the first-order condition for the agent’s
utility maximization problem. Mirrlees (1999) (originally circulated in 1975)
was the first to show that this approach is invalid in general (even though it had
frequently been applied in the literature). Under two conditions on the proba-
bility function of outcomes, the monotone likelihood-ratio condition (MLRC)
and the convexity of distribution function condition (CDFC), Rogerson (1985)
proved the validity of the first-order approach. Mirrlees (1979) had previously
surmised that these two assumptions would be sufficient for a valid first-order
approach and so these conditions are also known as the Mirrlees–Rogerson
conditions. The CDFC is a rather unattractive restriction. Rogerson (1985)
pointed out that the CDFC generally does not hold in the economically intu-
itive case of a stochastic production function with diminishing returns to scale
generating the output. In addition, Jewitt (1988) observed that most of the
standard textbook probability distributions do not satisfy the CFDC.4  Jewitt
(1988) provided a set of sufficient technical conditions avoiding the CDFC
and two sets of conditions for principal–agent models with multiple signals on
the agent’s effort. Sinclair-Desgagné (1994) introduced a generalization of the
CDFC for an extension of the Mirrlees–Rogerson conditions to a first-order
approach for multi-signal principal–agent problems. Finally, Conlon (2009)
clarified the relationship between the different sets of sufficient conditions and
presented multi-signal generalizations of both the Mirrlees–Rogerson and the
Jewitt sufficient conditions for the first-order approach. Despite this progress,5
all of these sufficient sets of conditions are regarded as highly restrictive; see
Conlon (2009) and Kadan, Reny, and Swinkels (2011).

Principal–agent models in which the agent’s action set is one-dimensional
dominate both the literature on the first-order approach as well as the applied
and computational literature; see, for example, Araujo and Moreira (2001),
Judd and Su (2005), and Armstrong, Larcker, and Su (2010). However, the
analysis of linear multi-task principal–agent models in Holmström and Mil-
grom (1991) demonstrates that multivariate agent problems exhibit some fun-
damental differences in comparison to the common one-dimensional models.
The theoretical literature that allows the set of actions to be multidimensional,
for example, Grossman and Hart (1983), Kadan, Reny, and Swinkels (2011),
and Kadan and Swinkels (2012), focuses on the existence and properties of

4LiCalzi and Spaeter (2003) described two special classes of distributions that satisfy the
CDFC.

5Araujo and Moreira (2001) introduced a Lagrangian approach different from Mirrlees
(1999). Instead of imposing conditions on the outcome distribution, they included more infor-
mation in the Lagrangian, namely a second-order condition as well as the behavior of the utility
function on the boundary in order to account for possible nonconcave objective functions. A num-
ber of additional technical assumptions considerably limits the applicability of this approach as
well.
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equilibria. To the best of our knowledge, the first-order approach has not been
extended to models with multiple decision variables affecting the outcome
probabilities.

We show how to extend our polynomial optimization approach to principal–
agent models in which the agent has more than one decision variable. When we
apply the multivariate optimization approach of Jibetean and De Klerk (2006),
we encounter a theoretical difficulty. Unlike univariate nonnegative polynomi-
als, multivariate nonnegative polynomials are not necessarily sums of squares
of fixed degree. This fact has the consequence that we can no longer provide
an exact reformulation of the agent’s utility maximization problem but only a
relaxation depending on the degree of the involved polynomials. The relaxed
problem yields an upper bound on the agent’s maximal utility. We then use
this relaxation to replace the agent’s optimization problems by equations and
inequalities including a constraint that requires the upper utility bound not to
deviate from the true maximal utility by more than some prespecified toler-
ance level. We then prove that as the tolerance level converges to zero, the op-
timal solutions of the sequence of nonlinear programs involving the relaxation
converge; and, in fact, the limit points yield optimal solutions to the original
principal–agent problem.

Although our main results are of theoretical nature, our paper also con-
tributes to the computational literature on principal–agent problems. Due to
the strong assumptions of the first-order approach, the computational liter-
ature has shied away from it. Prescott (1999, 2004) approximated the action
and compensation sets by finite grids and then allowed for action and compen-
sation lotteries. The resulting optimization problem is linear and thus can be
solved with efficient large-scale linear programming algorithms. Judd and Su
(2005) avoided the compensation lotteries and only approximated the action
set by a finite grid. This approximation results in a mathematical program with
equilibrium constraints (MPEC). Contrary to the LP approach, the MPEC ap-
proach may face difficulties finding global solutions, since the standard MPEC
algorithms only search for locally optimal solutions. Despite this shortcoming,
MPEC approaches have recently received a lot of attention in economics; see,
for instance, Su and Judd (2012) and Dubé, Fox, and Su (2012). Our polyno-
mial optimization approach does not need lotteries and instead allows us to
solve principal–agent problems with continuous action and compensation sets.

The remainder of this paper is organized as follows. In Section 2, we de-
scribe the principal–agent model and the classical first-order approach. Sec-
tion 3 gives a short introduction to polynomial optimization and Section 4
states and proves our main result. In Section 5, we consider two nonpolynomial
applications and show how to find approximate solutions with the polynomial
optimization approach. We extend the polynomial approach to models with
multidimensional action sets in Section 6. Section 7 concludes. Lastly, we also
provide some online Supplemental Material (Renner and Schmedders (2015)).
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2. THE PRINCIPAL–AGENT MODEL

In this section, we briefly describe the principal–agent model under consider-
ation. Next we review the first-order approach. We complete our initial discus-
sion of principal–agent problems by proving the existence of a global optimal
solution.

2.1. The Principal–Agent Problem

The agent chooses an action (“effort level”) a from a setA⊂ R
L. The signal

s (on the outcome, e.g., “output” or “gross profit”) received by the principal
is an element of the sample space S of a probability space. In many cases,
S is chosen to be a discrete subset of the reals. Let μ(•|a) be a parameterized
probability measure on the set of signals S. Then for any S̃ ⊂ S, μ(S̃|•) is a
function mapping A into R. Of course,

∫
S
μ(ds|a)= 1 for all a ∈A.

The principal cannot monitor the agent’s action but only the signal. Thus,
the principal will pay the agent conditional on the observed signal. Let W
denote a subset of the set of functions over S. Call an element w ∈ W a
contract. If S is a discrete subset of R with cardinality N , then the contract
(“compensation scheme”) between the principal and the agent is a vector
w = (w1�w2� � � � �wN) ∈ W ⊂ R

N . The principal has a Bernoulli utility func-
tion over income, u : I × S→ R, with I = (¯I�∞)⊂ R for some ¯I ∈ R ∪ {−∞}.
For example, if the principal receives the signal s and pays the wage w(s),
then she receives utility u(w(s)� s). The agent has a Bernoulli utility func-
tion over income and actions given by v :J × A → R, with J = (¯J�∞) ⊂ R

for some ¯J ∈ R∪ {−∞}. Both the principal and the agent have von Neumann–
Morgenstern utilities. W and μ are now chosen in such a manner that the
expected utility functions are well-defined.

The expected utility functions of the principal and agent are

U(w�a)=
∫
S

u
(
w(s)� s

)
μ(ds|a) and

V (w�a)=
∫
S

v
(
w(s)�a

)
μ(ds|a)�

respectively. We are now in the position to state the principal–agent problem:

max
w∈W�a∈A

U(w�a)(1)

s.t. a ∈ arg max
b∈A

V (w�b)�

V (w�a)≥ ¯V �
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The objective of this optimization problem is to maximize the principal’s ex-
pected utility. The first constraint,

a ∈ arg max
b∈A

V (w�b)�(2)

is the incentive-compatibility constraint for the agent; he will only take actions
that maximize his own expected utility. We assume implicitly that the agent
does not work against the principal; that is, if he is indifferent between several
different actions, then he will choose the action most beneficial to the prin-
cipal. The second constraint is the participation constraint for the agent. He
has an outside option and will accept a contract only if he receives at least the
expected utility ¯V of that outside opportunity.

REMARK—A Comment on the General Problem Assumptions: We briefly
provide the reader with some guidance for the general theoretical approach
and the subsequent implementation on a computer which we pursue in this
paper. Generally speaking, our approach considers problems of the following
form:

max
(w�a)∈X

U(w�a)

s.t. a ∈ arg max
b∈A

V (w�b)�

We do not impose standard assumptions such as, for example, concave utility
functions. Instead, the mathematically essential assumptions for the solution
approach are that

• the set A is either a one-dimensional interval, or it is a compact set given
by polynomial inequalities; and

• the function V is either a rational function in the variable b or it can be
approximated by such on the feasible region.
Moreover, in this paper we restrict attention to deterministic contracts and
payoffs. But this assumption is not essential. We forgo any mixing, since its
purpose is usually to “convexify” the lower-level problem. This convexification
often increases the number of variables significantly. Therefore, in such a case
it is more efficient to rely on methods from bilevel optimization.

For the computer implementation of the solution approach to be tractable,
we need additional standard assumptions. The function U must have a suffi-
cient order of differentiability; the set X must be finite-dimensional, compact,
and defined by a finite number of differentiable functions which satisfy some
constraint qualification. Furthermore, a numerical representation on a com-
puter will usually require an appropriate discretization of the problem in order
to reduce it to finite dimensions. Therefore, for numerical necessities, it suf-
fices to consider models with a finite set S = {s1� � � � � sN} and with W ⊂ R

m for
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some m. (There do exist rare exceptions to these last requirements. For ex-
ample, the normal distribution has the nice property that all its moments exist
and are polynomial in the mean and standard deviation. Thus, if we integrate a
polynomial function over a normal distribution, the result is a polynomial and
no approximation is necessary.)

The principal cannot observe the agent’s actions but knows his utility func-
tion. Thus, the described principal–agent model exhibits pure moral haz-
ard and no hidden information. The first-order approach for models of this
type has been examined by Mirrlees (1999), Rogerson (1985), Jewitt (1988),
Sinclair-Desgagné (1994), Alvi (1997), Jewitt, Kadan, and Swinkels (2008),
Conlon (2009), and others.

2.2. The First-Order Approach

In general, it is very difficult to find a global optimal solution to the
principal–agent problem (1). For the model with a one-dimensional action set,
A = [¯a� ā] with ¯a ∈ R and ā ∈ R ∪ {∞}, the popular first-order approach re-
places the incentive-compatibility constraint (2) by a stationarity condition. If
the set A is sufficiently large so that the optimal solution to the agent’s ex-
pected utility maximization problem has an interior solution, then, for S =
{s1� � � � � sN}, the necessary first-order condition is

∂

∂a
V (w� a)=

N∑
i=1

(
∂

∂a
v(wi�a)μ(si|a)+ v(wi� a) ∂

∂a
μ(si|a)

)
= 0�(3)

For an application of the first-order approach, standard monotonicity, curva-
ture, and differentiability assumptions are imposed. Rogerson (1985) intro-
duced the following assumptions (in addition to some other minor technical
conditions):

(1) The function μ(s|•) :A→ [0�1] is twice continuously differentiable for
all s ∈ S.

(2) The principal’s Bernoulli utility function u : I× S→ R is strictly increas-
ing, concave, and twice continuously differentiable in its first argument.

(3) The agent’s Bernoulli utility function v :J ×A→ R satisfies v(w�a) =
ψ(w)−a. The function ψ :J → R is strictly increasing, concave, and twice con-
tinuously differentiable.
These three assumptions alone are not sufficient for the first-order approach
to be valid, since the probabilities μ(si|a) depend on the action a and thus af-
fect the monotonicity and curvature of the expected utility functions. Rogerson
(1985) proved the validity of the first-order approach under two additional as-
sumptions on the probability function; see also Mirrlees (1979). We define the
function Fj(a)= ∑j

i=1μ(si|a). For μ(si|a) > 0 for all a ∈A and all i, the con-
ditions of Mirrlees (1979) and Rogerson (1985) are as follows:
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(MLRC) (monotone likelihood-ratio condition6) The measure μ has the
property that, for a1 ≤ a2, the ratio μ(si|a1)

μ(si|a2)
is decreasing in i.

(CDFC) (convexity of the distribution function condition) The function F
has the property that F ′′

i (a)≥ 0 for all i= 1�2� � � � �N and a ∈A.
According to Conlon (2009), these assumptions are the most popular con-

ditions in economics, even though other sufficient conditions exist; see Jewitt
(1988). Sinclair-Desgagné (1994) generalized the conditions of Mirrlees (1979)
and Rogerson (1985) for the multi-signal principal–agent problem. Conlon
(2009), in turn, presented multi-signal generalizations of both the Mirrlees–
Rogerson and the Jewitt sufficient conditions for the first-order approach. De-
spite this progress, all of these conditions are regarded as highly restrictive; see
Conlon (2009) and Kadan, Reny, and Swinkels (2011).

2.3. Existence of a Global Optimal Solution

For the sake of completeness, we show the existence of a global optimal
solution to the principal–agent problem (1) without assumptions on the differ-
entiability, monotonicity, and curvature of the utility and probability functions.
For this purpose, we introduce the following three assumptions.

ASSUMPTION 1—Feasibility: There exists a contractw ∈W such that the agent
is willing to participate, that is, V (w�a)≥ ¯V for some a ∈A.

ASSUMPTION 2—Compactness: Both decision variables are chosen from com-
pact domains.

(1) The set A of actions is a nonempty, compact subset of a finite-dimensional
Euclidean space, A⊂ R

L.
(2) The set W of possible contracts is a nonempty, compact metric space.

ASSUMPTION 3—Continuity: All functions in the model are well-defined and
continuous. In particular, both integrals U(w�a) and V (w�a) exist for any pair
(w�a).

(1) The principal’s expected utility function U :W ×A→R is continuous.
(2) The agent’s expected utility function V :W ×A→ R is continuous.

Under the stated assumptions, a global optimal solution to the optimization
problem (1) exists.

PROPOSITION 1: If Assumptions 1–3 hold, then the principal–agent problem
(1) has a global optimal solution.

6The MLRC implies a stochastic dominance condition, F ′
i (a) ≤ 0 for all i = 1�2� � � � �N and

a ∈A.
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PROOF: Consider the optimal value function Ψ :W → R for the agent de-
fined by Ψ(w)= max{V (w�a) | a ∈A}. By Assumptions 2 and 3, the expected
utility function V is continuous on the compact domain W ×A.7 Thus, (a spe-
cial case of) Berge’s Maximum Theorem (Berge (1963)) implies that Ψ is con-
tinuous on its domainW . Using the functionΨ , we can state the feasible region
F of the principal–agent problem (1),

F = {
(w�a) ∈W ×A | V (w�a)=Ψ(w)�V (w�a)≥ ¯V

}
�

The feasible region F is nonempty by Assumption 1. As a subset of W ×A,
it is clearly bounded. Since both V and Ψ are continuous functions and the
constraints involve only an equation and a weak inequality, the set F is also
closed. And so the optimization problem (1) requires the maximization of the
continuous function U on the nonempty, compact feasible region F . Now the
proposition follows from the extreme value theorem of Weierstrass. Q.E.D.

3. UNIVARIATE POLYNOMIAL AND RATIONAL OPTIMIZATION

In this section, we briefly describe the underlying mathematics of our re-
formulation approach. Our approach relies on a classical result from real al-
gebraic geometry to reformulate the agent’s problem into a convex optimiza-
tion problem. Our brief review is based upon the survey by Laurent (2009)
and the book by Lasserre (2010). In Section 3.1, we describe so-called sums of
squares for multidimensional polynomials. Subsequently, in Sections 3.2–3.4,
we restrict attention to univariate polynomials and optimization. We provide
a summary of the mathematical background for multidimensional problems in
Appendix A.2.1.

3.1. Polynomials and Sums of Squares Over Rn

For the study of polynomial optimization, it is necessary to first review a few
fundamental concepts from real algebraic geometry.

The expression R[x1� � � � � xn] denotes the ring of polynomials (Greuel and
Pfister (2002)) in n variables over the real numbers. Whenever possible, we
use the abbreviation R[x] with x = (x1� � � � � xn)

T . For clarification, we denote
the set of nonnegative integers by N. For a vector α ∈ N

n, we denote the mono-
mial xα1

1 · · ·xαnn by xα. The degree of this monomial is |α| = ∑n

i=1 αi. A polyno-
mial p ∈ R[x], p= ∑

α aαxα is a sum of terms aαxα with finitely many nonzero
aα ∈ R. The degree of p is deg(p)= max{α|aα 
=0} |α|.

Let g1� � � � � gm ∈ R[x]. Then the set

K = {
x ∈ R

n | gi(x)≥ 0�∀i= 1� � � � �m
}

7W × A is compact due to Tychonoff’s product theorem, and also metrizable. Therefore,
W ×A is a compact metric space and Berge’s theorem can be applied.
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is called a basic semi-algebraic set.
A central concept of polynomial optimization is the notion of a sum of

squares.

DEFINITION 1: A polynomial σ ∈ R[x] is called a sum of squares if there
exist finitely many polynomials p1� � � � �pm ∈ R[x] such that σ = ∑m

i=1p
2
i . The

expression Σ[x] ⊂ R[x] denotes the set of sums of squares. And Σd[x] ⊂ R[x]
denotes the set of sums of squares up to degree d.

A sum of squares σ is always a nonnegative function. The converse, however,
is not always true; that is, not every nonnegative polynomial is a sum of squares.
Also it is clear that a polynomial can only be a sum of squares if it has even
degree. Moreover, the degree of each polynomial pi in the sum is bounded
above by half the degree of σ . To see the link to positive semidefinite matrices,
we consider the vector

vd(x)= (
xα

)
|α|≤d = (

1�x1� � � � � xn�x
2
1�x1x2� � � � � xn−1xn�x

2
n� � � � � x

d
n

)T
of all monomials xα of degree at most d. This vector is of dimension

(
n+d
d

)
.

There is a strong connection between sums of squares, the vector vd(x), and
positive semidefinite matrices.

LEMMA 1—Lasserre (2010, Proposition 2.1): A polynomial σ ∈ R[x] of de-
gree 2d is a sum of squares if and only if there exists a symmetric positive semidef-
inite

(
n+d
d

)× (
n+d
d

)
matrix Q such that σ = vd(x)TQvd(x), where vd(x) is the vector

of monomials in x of degree at most d.

This lemma completes the description of multidimensional sums of squares.
In the remainder of this brief survey, we restrict attention to the special case of
univariate polynomials.

3.2. Sum of Squares Representations Over R

Recall that a symmetric matrix M ∈ R
q×q is called positive semidefinite if

and only if vTMv ≥ 0 for all v ∈ R
q. We denote this property of a matrix M by

M � 0. The set of all symmetric positive semidefinite q×q matrices is a closed
convex cone.

Now we illustrate the relationship between finding sum of squares represen-
tations and semidefinite matrices for the univariate case. For n= 1,

vd(x)= (
1�x�x2� � � � � xd

)T
�

We can identify a polynomial pi(x)= ∑d

j=0 aijx
j with its vector of coefficients

ai = (ai0� ai1� � � � � aid)
T and write pi(x) = aTi vd(x). Next we aggregate m such
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polynomials in a matrix-vector product

⎡
⎢⎢⎣
p1(x)
p2(x)
���

pm(x)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
a10 a11 � � � a1d

a20 a21 � � � a2d
���

���
���

���
am0 am1 � � � amd

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1
x
���
xd

⎤
⎥⎥⎦ �

Denoting the (m× (d+ 1)) coefficient matrix on the right-hand side by V , we
can write a sum of squares as

σ(x)=
m∑
i=1

p2
i (x)= (

V vd(x)
)T (
V vd(x)

) = vd(x)TQvd(x)

for Q = V TV . By construction, the matrix Q is symmetric, positive semidefi-
nite, and has at most rank m. Note that if we start indexing Q with 0, then Qij

with i+ j = h contributes to the term of σ with degree h.
Observe that finding a sum of squares representation for the polynomial

σ(x) requires finding a symmetric positive semidefinite matrix Q such that
the polynomials on the left-hand and right-hand side are identical. But that
condition just requires the polynomials to have identical coefficients for all
monomials. If σ has degree 2d, then the coefficient conditions are 2d + 1 lin-
ear equations in the (d+1)(d+2)/2 unknown elements ofQ. This set of linear
equations together with the requirement that Q is symmetric positive semidef-
inite describe a convex set. And so finding a sum of squares representation of
a univariate polynomial σ is equivalent to a convex feasibility problem.

For polynomials in a single variable x, the set of nonnegative polynomials
and the set Σ[x] of sums of squares are identical.

LEMMA 2—Laurent (2009, Lemma 3.5): Any nonnegative univariate polyno-
mial is a sum of (at most) two squares.

We next consider nonnegative univariate polynomials on closed intervals.
For a general treatment, it suffices to examine two cases, [−1�1] and [0�∞).
The next proposition states that nonnegative polynomials on these intervals
can be expressed via two sums of squares and a polynomial that describes the
respective interval via a semi-algebraic set. Note that [−1�1] = {x ∈ R | 1−x2 ≥
0} and [0�∞)= {x ∈ R | x≥ 0}.

PROPOSITION 2—Lasserre (2010, Theorems 2.6, 2.7), Laurent (2009, Theo-
rems 3.21, 3.23): Let p ∈ R[x] be of degree d.

(1) p≥ 0 on [−1�1] if and only if

p= σ0 + σ1 · (1 − x2
)
� σ0�σ1 ∈ Σ[x]
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with deg(σ0)�deg(σ1 ·(1−x2))≤ d if d is even and deg(σ0)�deg(σ1 ·(1−x2))≤
d+ 1 if d is odd.

(2) p≥ 0 on [0�∞) if and only if

p= σ0 + σ1x� σ0�σ1 ∈ Σ[x]
with deg(σ0)�deg(xσ1)≤ d.

These results depend critically on the specific description of the intervals via
the polynomials 1 − x2 and x, respectively. Other descriptions lead to weaker
results with representations involving higher degree sum of squares polynomi-
als.

Proposition 2 can also be used to show more general cases. The univariate
polynomial f (x) is nonnegative on K = [a�∞), K = (−∞� b], and K = [a�b]
if and only if

p(x)= f (x+ a)≥ 0 ∀x ∈ [0�∞)�

p(x)= f (b− x)≥ 0 ∀x ∈ [0�∞)�

p(x)= f ((x(b− a)+ (a+ b))/2) ≥ 0 ∀x ∈ [−1�1]�
respectively.

Next we describe the application of the representation results for nonnega-
tive univariate polynomials to polynomial optimization.

3.3. Polynomial Optimization in R

For a polynomial p ∈ R[x] and a nonempty semi-algebraic set K ⊂ R, con-
sider the constrained polynomial optimization problem,

pmin = inf
x∈K
p(x)�(4)

We can rewrite problem (4) as follows:

sup
ρ

ρ(5)

s.t. p(x)− ρ≥ 0 ∀x ∈K�
For any feasible ρ ∈R, the following inequality holds:

ρ≤ pmin�(6)

Note that the constraints of the rewritten problem state that the polyno-
mial p − ρ must be nonnegative on the set K. Now consider the domain
K = [−1�1] = {x | 1 − x2 ≥ 0}. In this case, applying part (1) of Proposition 2
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enables us to rewrite the infinitely many constraints of problem (5). With the
polynomial g defined by g(x) = 1 − x2, we obtain the following optimization
problem:

sup
ρ�σ0�σ1

ρ(7)

s.t. p− ρ= σ0 + σ1g�

σ0�σ0 ∈ Σ[x]�
Note that the equality constraint here signifies equality as polynomials.
Lemma 1 enables us to rewrite the optimization problem once more by replac-
ing the unknown sums of squares σ0 and σ1 by positive semidefinite matrices.
We define8 the number dp = � deg(p)

2  for a polynomial p ∈ R[x]. According to
Proposition 2 the number dp is an upper bound for the degrees of σ0 and σ1.
And so we can rewrite the optimization problem:

sup
ρ�Q(0)�Q(1)

ρ(8)

s.t. p− ρ= vTdpQ(0)vdp + gvTdp−1Q
(1)vdp−1�

Q(0)�Q(1) � 0�

Q(0) ∈R
(dp+1)×(dp+1)� Q(1) ∈ R

dp×dp�

vdp = (
1�x� � � � � xdp

)T
� vdp−1 = (

1�x� � � � � xdp−1
)T
�

Note that the first functional constraint holds if and only if all coefficients
(of identical monomials on the left- and right-hand side) are identical. Thus
this functional constraint reduces to a set of linear constraints which only in-
volve the coefficients of the terms. Let p = ∑deg(p)

l=0 clx
l and write Q(0)

ij , i� j =
0�1� � � � � dp, for the (i� j)th entry of the matrix Q(0) (similarly for Q(1)). Then
we can rewrite the first constraint of problem (8),

c0 − ρ=Q(0)
0�0 +Q(1)

0�0�(9)

cl =
∑
i+j=l

Q(0)
ij +

∑
i+j=l

Q(1)
ij −

∑
i+j=l−2

Q(1)
ij � l= 1� � � � � d�

This set of constraints is just a set of linear equations in the unknowns ρ
and Q(m)

ij . In particular, we observe that the final optimization problem is a
semidefinite optimization problem (SDP). Note that the positive semidefinite
constraint for the matrices Q(0) and Q(1) can be interpreted as polynomial in-
equality constraints. This fact follows from Proposition A.1 in the Supplemen-
tal Material.

8Recall the notation �x for the smallest integer not less than x.
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The following proposition summarizes the relationship between the original
problem and the reformulation.

PROPOSITION 3—Lasserre (2010, Theorem 5.8): If p(x)= ∑
i cix

i and K =
{x ∈ R | 1 − x2 ≥ 0} = [−1�1], then problem (8) is equivalent to infx∈[−1�1]p(x)
and both problems have an optimal solution.

The optimal solutions satisfy ρ= pmin. In sum, the constrained optimization
problem of minimizing a univariate polynomial on an interval of R reduces to
an SDP, a convex optimization problem. Note that the optimization is over a
compact domain and so we can replace the supremum by a maximum.

3.4. Rational Objective Function

Jibetean and De Klerk (2006) proved an analogous result for the case of
rational objective functions. Let p(x)�q(x) be two polynomials defined on a
subset K ⊂R. Consider the following optimization problem:

pmin = inf
x∈K�q(x) 
=0

p(x)

q(x)
�(10)

We can rewrite this problem in polynomial form.

PROPOSITION 4—Jibetean and De Klerk (2006, Theorem 2): If p and q have
no common factor and K is an open connected set or a (partial) closure of such a
set, then

(1) if q changes sign on K, then pmin = −∞,
(2) if q is nonnegative on K, problem (10) is equivalent to

pmin = sup
{
ρ | p(x)− ρq(x)≥ 0�∀x ∈K}

�

Let p�q ∈ R[x] and set d = max(dp�dq). For K = [−1�1] and g(x)= 1 − x2,
we can again use Proposition 2 and reformulate problem (10),

sup
ρ�σ0�σ1

ρ(11)

s.t. p− ρq= σ0 + gσ1�

σ0 ∈ Σ2d� σ1 ∈ Σ2(d−1)�

And so we can solve the constrained optimization problem (10) also as an
SDP.
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4. THE POLYNOMIAL OPTIMIZATION APPROACH FOR A⊂R

In this section, we state our main result, Theorem 1, and illustrate it by a
numerical example. Subsequently, we prove the theorem, and finally, we pro-
vide a discussion of the key assumptions and the resulting limitations of the
polynomial optimization approach.

Throughout this section, we assume that the set S is finite. This assumption
is not particularly restrictive, since, for computational purposes, it is always
necessary to approximate the integrals in the expectation operators over con-
tinuous domains by finite sums and also to limit the compensation scheme to
a finite-dimensional set. In the example in Section 5.2, we demonstrate how to
approximate a continuous problem.

4.1. The Main Theorem

We introduce the following assumption on the agent’s expected utility func-
tion.

ASSUMPTION 4—Rational Expected Utility Function: The parameterized
probability functions μ(s|•) :A → [0�1] and the agent’s Bernoulli utility func-
tion v :J ×A→ R are such that the agent’s expected utility function is a rational
function of the form9

V (w� a)=
N∑
j=1

v(wj�a)μ(sj|a)= −

d∑
i=0

ci(w)ai

d∑
i=0

fi(w)ai

for functions ci� fi :W → R with
∑d

i=0 fi(w)a
i > 0 for all (w� a) ∈W ×A.10 More-

over, the two polynomials in the variable a,
∑d

i=0 ci(w)a
i and

∑d

i=0 fi(w)a
i, have

no common factors and d ∈ N is maximal such that cd(w) 
= 0 or fd(w) 
= 0.

In light of Proposition 2, it suffices to consider the set of actions A =
[−1�1] = {a ∈ R | 1 − a2 ≥ 0}. (The unbounded case can be handled simi-
larly.) We define the number D = � d2 . The following theorem11 provides us
with an optimization problem that is equivalent to the principal–agent prob-
lem (1).

9The minus sign in the rational expression simplifies the application of mathematical methods
from the literature.

10The positivity condition for the denominator is necessary, since a change in sign would lead
to division by zero.

11Note that the row and column indexing of the two matrices in the theorem starts at 0.
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THEOREM 1: LetA= [−1�1] and suppose Assumption 4 holds. Then (w∗� a∗)
solves the principal–agent problem (1) if and only if there exist ρ∗ ∈ R as well as
matrices Q(0)∗ ∈ R

(D+1)×(D+1) and Q(1)∗ ∈ R
D×D such that (w∗� a∗�ρ∗�Q(0)∗�Q(1)∗)

solves the following optimization problem:

max
w�a�ρ�Q(0)�Q(1)

U(w� a)(12)

s.t. c0(w)− ρf0(w)=Q(0)
0�0 +Q(1)

0�0�(12.a)

cl(w)− ρfl(w)=
∑
i+j=l

Q(0)
ij +

∑
i+j=l

Q(1)
ij −

∑
i+j=l−2

Q(1)
ij �(12.b)

l= 1� � � � � d�

Q(0)�Q(1) � 0�(12.c)

ρ

(
d∑
i=0

fi(w)ai
)

=
d∑
i=0

ci(w)ai�(12.d)

d∑
i=0

ci(w)ai ≤ −¯V
(

d∑
i=0

fi(w)ai
)
�(12.e)

−a2 + 1 ≥ 0�(12.f)

w ∈W �(12.g)

The new optimization problem (12) has the same objective function as the
original principal–agent problem (1). Unlike the original problem, the new
problem (12) is not a bilevel optimization problem. Instead, the constraint in-
volving the agent’s expected utility maximization problem has been replaced by
inequalities and equations. Problem (12) has the additional decision variables
ρ ∈ R, Q(0) ∈ R

(D+1)×(D+1), and Q(1) ∈ R
D×D. The optimal value ρ∗ of the vari-

able ρ in problem (12) will be −V (w∗� a∗), the negative of the agent’s maximal
expected utility. Constraints (12.a)–(12.c) use a sum of squares representation
of nonnegative polynomials to ensure that, for a contract w chosen by the prin-
cipal, −V (w� a)≥ ρ for all a ∈A. That is, −ρ is an upper bound on all possible
utility levels for the agent. Note that equations (12.a) and (12.b) are linear in
ρ and the elements of the matrices Q(0) ∈ R

(D+1)×(D+1) and Q(1) ∈ R
D×D. Con-

straint (12.c) requires that these two matrices are symmetric positive semidefi-
nite. (Proposition A.1 in the Supplemental Material summarizes properties of
positive semidefinite matrices which show that constraint (12.c) can be writ-
ten as a set of polynomial inequalities.) Next, constraint (12.d) ensures that
the variable −ρ is actually equal to the agent’s utility for effort a and con-
tract w. Therefore, this constraint together with the constraints (12.a)–(12.c)
forces any value of a satisfying the equation to be the agent’s optimal effort
choice as well as the value of ρ to be the corresponding maximal expected
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utility value. Put differently, for a given contract w, the first four constraints
ensure an optimal effort choice by the agent. The last three constraints are
straightforward. Constraint (12.e) is the transformed participation constraint
for the agent’s rational expected utility function. Constraint (12.f) is a poly-
nomial representation of the feasible action set and constraint (12.g) is just
the constraint on the compensation scheme from the original principal–agent
problem (1).

4.2. An Illustrative Example

Before we prove the theorem, it is helpful to illustrate it by a simple exam-
ple.

EXAMPLE 1: Let A = [0�1] and W = R+. There are N = 3 possible out-
comes s1 < s2 < s3 which occur with the probabilities

μ(s1|a)=
(

2
0

)
a0(1 − a)2� μ(s2|a)=

(
2
1

)
a(1 − a)�

μ(s3|a)=
(

2
2

)
a2(1 − a)0�

The principal is risk-neutral with Bernoulli utility u(w� s) = s −w. The agent
is risk-averse and has utility

v(w�a)= w1−η − 1
1 −η − κa2�

where η 
= 1, η≥ 0, and κ > 0. The agent’s expected utility is

V (w1�w2�w3� a)= (1 − a)2w
1−η
1 − 1
1 −η + 2(1 − a)aw

1−η
2 − 1
1 −η

+ a2w
1−η
3 − 1
1 −η − κa2�

The second-order partial derivative of V with respect to a,

∂2V

∂a2 = 2w1−η
1

1 −η − 4w1−η
2

1 −η + 2w1−η
3

1 −η − 2κ�

changes sign on W × A. Thus, this function is not concave and so the clas-
sical first-order approach does not apply. We apply Theorem 1 to solve this
principal–agent problem. For simplicity, we consider a specific problem with
η= 1

2 , ¯V = v(1�0)= 0, κ= 2, and (s1� s2� s3)= (0�2�4).
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First we transform the set of actions A= [0�1] into the interval A= [−1�1]
via the variable transformation a �→ a+1

2 . The resulting expected utility func-
tions are

U(w� a)= 2 + 2a− w1

4
+ aw1

2
− a2w1

4
− w2

2

+ a2w2

2
− w3

4
− aw3

2
− a2w3

4
�

V (w� a)= −5
2

+
√
w1

2
+ √

w2 +
√
w3

2
− a− a√w1

+ a√w3 − a2√w2 + a2√w1

2
− a2

2
+ a2√w3

2
�

We observe that V (w� a) is a quadratic polynomial in a and so, referring to
Assumption 4, d = 2 and D = 1. The representation of −V (w� a) according
to that assumption has the nonzero coefficients f0(w) = 1 and c0(w) = 5

2 −√
w1
2 − √

w2 − √
w3
2 , c1(w)= 1 + √

w1 − √
w3, and c2(w)= 1

2 − √
w1
2 + √

w2 − √
w3
2 .

According to Theorem 1, the matrix Q(0) is a 2 × 2 matrix and Q(1) is just a
single number. With

Q(0) =
(
n00 n01

n01 n11

)
and Q(1) =m00�

we can rewrite the principal–agent problem following the theorem:

max
w1�w2�w3�a�ρ�n00�n01�n11�m

U(w1�w2�w3� a)

s.t.
5
2

−
√
w1

2
− √

w2 −
√
w3

2
− ρ= n00 +m00�

1 + √
w1 − √

w3 = 2n01�

1
2

−
√
w1

2
+ √

w2 −
√
w3

2
= n11 −m00�

ρ= −V (w1�w2�w3� a)�

n00 ≥ 0� n11 ≥ 0� n00n11 − n2
01 ≥ 0� m00 ≥ 0�

V (w1�w2�w3� a)≥ 0�

−a2 + 1 ≥ 0�

w1�w2�w3 ≥ 0�
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TABLE I

NUMERICAL SOLUTIONS TO THE PRINCIPAL–AGENT PROBLEM AS A FUNCTION OF η

η U(w∗
1�w

∗
2�w

∗
3� a

∗) a∗ w∗
1 w∗

2 w∗
3 UFB aFB wFB

0 1 1 [0�1) [0�1] 3 1 1 3
1
4 0�6760 0�8260 0.2777 1.177 3�344 0�7471 0�7993 2�450
1
3 0�5723 0�7637 0.2879 1.273 3�441 0�6850 0�7541 2�332
1
2 0�3844 0�6446 0.3417 1.511 3�511 0�5814 0�6823 2�148
4
5 0�1292 0�4881 0.5314 1.798 3�296 0�4410 0�5918 1�926
2 −0�3444 0�2413 0.8749 1.817 2�416 0�1349 0�4196 1�544
4 −0�6102 0�1277 0.9657 1.597 1�866 −0�09165 0�3117 1�338

This optimization problem is not yet polynomial. We replace
√
wi by a new

variable ŵi. This change of variable results in a polynomial problem. Then we
can solve this nonlinear optimization problem with GloptiPoly (see Henrion,
Lasserre, and Löfberg (2009)) and obtain the globally optimal contract w∗ =
(0�3417�1�511�3�511) and the resulting optimal effort a∗ = 0�6446. Table I re-
ports solutions for different levels of the agent’s risk aversion η. For com-
pletion, the table also reports the corresponding first-best solutions12 indexed
by FB.

For η = 0, when the agent is risk-neutral, a continuum of contracts exists.
However, the intervals of values for w1 and w2 are economically irrelevant
since, for w3 = 1, the optimal effort of a∗ = 1 results in zero probability of
outcomes 1 and 2 and the first-best solution.

The purpose of this example is to illustrate the statement of Theorem 1. As
such, the example was deliberately constructed to be simple. And even though
the principal–agent problem in the example does not satisfy the sufficient con-
ditions of the first-order approach, that method does deliver the same solution
as the polynomial optimization approach. In Section 5, we analyze much more
difficult problems from the economic literature.

4.3. Proofing of Theorem 1

PROOF OF THEOREM 1: Comparing the original principal–agent problem
(1) and the new problem (12), we observe that the upper-level problem has
not been altered. In particular, we still maximize the same function U . Thus
to show that these problems are indeed equivalent, it suffices to see that any
feasible point for (12) corresponds to a feasible point for (1) and vice versa.

12Omitting the incentive compatibility constraint and maximizing the principal’s expected util-
ity only subject to the participation constraint leads to the first-best solution.
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Let (ŵ� â� ρ̂� Q̂(0)� Q̂(1)) be a feasible point for problem (12). Then by inequal-
ity (6) in Section 3.3, we have that

ρ̂≤ min
a∈[−1�1]

−V (ŵ� a)= − max
a∈[−1�1]

V (ŵ� a)≤ −V (ŵ� a)

for any a ∈ [−1�1]. Thus by the equality condition −V (ŵ� â) = ρ̂, we have
that V (ŵ� â) = maxa∈[−1�1] V (ŵ� a). Therefore, â ∈ arg maxa∈[−1�1] V (ŵ� a) and
V (ŵ� â)≥ ¯V . Hence, (ŵ� â) is a feasible point for (1).

Now let (ŵ� â) be a feasible point for (1). So â ∈ arg maxa∈[−1�1] V (ŵ� a). By
Proposition 4 from Section 3.4, there exist Q̂(0)� Q̂(1) � 0 and a maximal ρ̂ such
that the following system of equations is satisfied:

c0(ŵ)− ρ̂f0(ŵ)= Q̂(0)
0�0 + Q̂(1)

0�0�

cl(ŵ)− ρ̂fl(ŵ)=
∑
i+j=l

Q̂(0)
ij +

∑
i+j=l

Q̂(1)
ij −

∑
i+j=l−2

Q̂(1)
ij � l= 1� � � � � d�

Then ρ̂= mina∈[−1�1] −V (ŵ� a)= −V (ŵ� â) and therefore (ŵ� â� ρ̂� Q̂(0)� Q̂(1)) is
feasible for (12). Q.E.D.

The proof establishes that the feasible region of the original principal–agent
problem (1) is a projection of the feasible region of the optimization problem
(12). The first four constraints of problem (12) capture the agent’s expected
utility maximization problem. The constraints (12.a)–(12.d) force any value of
a in a feasible solution to be the agent’s optimal effort choice as well as the
value of ρ to be the corresponding maximal expected utility value. Put differ-
ently, for a given contract w, the first four constraints ensure an optimal effort
choice by the agent.

With some additional assumptions, we can solve the optimization problem
(12) to global optimality.

COROLLARY 1: Suppose Assumption 4 holds and that the functions ci� fi :
W → R (in Assumption 4) are polynomials in w ∈ W . Moreover, assume that
U is a polynomial, A= [−1�1], and W is a basic semi-algebraic set. Then (12) is
a polynomial optimization problem over a basic semi-algebraic set.

PROOF: The only problematic constraints are the positive semidefiniteness
constraints for the matrix. However, the positive semidefiniteness condition
on the Q(i) is equivalent to the condition that the principal minors, that are
themselves polynomials, are nonnegative. Thus the set of constraints defines a
semi-algebraic set. Q.E.D.

If the conditions of the corollary are satisfied, we can use the methods em-
ployed in GloptiPoly (see Henrion, Lasserre, and Löfberg (2009)) to find a
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globally optimal solution to the principal–agent problem. That is, we can ob-
tain a numerical certificate of global optimality. We use such an approach in
Example 1 to ensure global optimality.

4.4. Discussion of the Polynomial Approach’s Assumptions and Limitations

Theorem 1 rests on two key assumptions, namely, that the agent’s choice
set is a compact interval and his expected utility function is rational in effort.
The review of the mathematical background and the derivation of the theo-
rem show that we can easily dispense with the compactness assumption and
replace it by an unbounded interval such as [0�∞). While the second assump-
tion limits the direct applicability of the theorem, it does include the special
case of agents’ utility functions that are separable in wage and effort and fea-
ture a linear cost of effort (together with a rational probability distribution of
outcomes).

Corollary 1 imposes additional assumptions on the utility functions and the
set of wages; the principal’s expected utility is polynomial and the agent’s ex-
pected utility is rational in wages; the set of wages is a basic semi-algebraic set.
The assumption on the set of wages appears to be innocuous. The assumptions
on the utility functions rule out many standard utility functions such as expo-
nential or logarithmic utility functions. Moreover, the principal’s utility cannot
exhibit constant risk aversion. Although the assumption on the principal’s util-
ity function is rather strong, it includes the special case of a risk-neutral princi-
pal and a polynomial probability distribution. If the assumptions of Corollary 1
do not hold, we can still attempt to solve the final NLP with standard nonlinear
optimization routines.

Moreover, we show in Section 5 that we can apply the polynomial optimiza-
tion approach even to nonpolynomial problems. Before we can do so, we first
approximate the involved nonpolynomial functions with polynomial ones. In
Appendix B, we briefly describe an excellent approximation result for Cheby-
shev interpolation. Therefore, an application of the polynomial optimization
approach to the polynomial approximation of a principal–agent model has the
potential to deliver an excellent approximation of the original optimal solu-
tion. As a result, even the assumptions on the expected utility functions in
both the theorem and its corollary are not as limiting as they may appear at
first.

The most serious limitation of our polynomial optimization approach is that
it is not suited for a subsequent traditional theoretical analysis of the principal–
agent model. A central topic of the economic literature on moral hazard prob-
lems has been the study of the nature of the optimal contract and its com-
parative statics properties. Studies invoking the first-order approach rely on
the KKT conditions for the relaxed principal’s problem to perform such an
analysis. For example, Rogerson (1985) considered the case of a separable
utility function with linear cost of effort; using our notation, we can write
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(slightly abusing notation) v(wi� a) = v(wi) + a. Rogerson (1985) stated the
KKT conditions for the relaxed principal’s problem, part of which are the equa-
tions

u′(si −wi)
v′(wi)

= λ+ δμ
′(si|a)
μ(si|a)(13)

for i = 1�2� � � � �N with Lagrange multipliers λ and δ. Rogerson (1985) then
used these equations not only to prove the validity of the first-order ap-
proach but also to show that the optimal wage contract is increasing in the
output. An analogous approach to the analysis of the optimal contract has
been used in many studies; see, for example, Holmström (1979), Jewitt (1988),
and Jewitt, Kadan, and Swinkels (2008). The KKT conditions for the re-
laxed principal’s problem are rather simple since that problem has only two
constraints, the participation constraint and the first-order condition for the
agent’s problem. The optimization problem (12) stated in Theorem 1, how-
ever, has many more constraints. In addition, the constraints characterizing
the agent’s optimal effort choice are not intuitive. As a result, we cannot fol-
low the traditional approach for theoretically deriving additional properties of
the principal’s problem by simply using the reformulated optimization prob-
lem (12).

Since we cannot follow the traditional theoretical route, we would instead
have to rely on numerical solutions of many instances of problem (12) for a
further analysis of the properties of the optimal contract. While at first such
a numerical analysis may look rather unattractive compared to the theoretical
analysis based on the first-order approach, it also offers some advantages. The
first-order approach requires very strong assumptions and so applies only to
a small set of principal–agent problems. A numerical analysis based on our
polynomial optimization approach can examine many other problems that fall
outside the classical first-order approach.

5. EXAMPLES FROM THE ECONOMIC LITERATURE

In this section, we demonstrate the versatility of the proposed polynomial
optimization approach to principal–agent models. For this purpose, we first
revisit a counterexample to the classical first-order approach presented by
Mirrlees (1999) (originally circulated in 1975) and show that we can solve this
example with the polynomial approach. Subsequently, we investigate an eco-
nomic application of principal–agent models, namely, the executive compen-
sation problem in Armstrong, Larcker, and Su (2010). Both examples have in
common that they involve exponential functions and, therefore, do not satisfy
the assumptions of Theorem 1. We first approximate the involved functions by
Chebyshev polynomials and then apply the polynomial optimization approach
to the resulting polynomial problem. Appendix B provides a brief introduction
to Chebyshev interpolation.
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5.1. A Classical Example

Mirrlees (1999, Example 1) considered the following optimization prob-
lem13:

max
z�b

−(b− 2)2 − (z− 1)2(14)

s.t. z ∈ arg max
x
V (b�x)= be−(x+1)2 + e−(x−1)2

and showed that the first-order approach fails to solve this problem. Not a
single of the solutions delivered by the first-order approach matches the actual
optimal solution which Mirrlees (1999) reported as b= 1 and z = 0�957.

Observe that for b = 0, the unique optimal solution to the agent’s problem
is z = 1 and so the objective function value for the principal is −4. For b < 0,
the principal’s value will be less than −4. Thus, it suffices to consider the case
b≥ 0. Furthermore, observe that the function V is a weighted sum of two func-
tions describing bell curves, the first with nonnegative weight b centered at −1
and the second with weight 1 centered at 1. As a result, V is strictly monotoni-
cally increasing for x <−1 and strictly decreasing for x > 1 and so all globally
optimal solutions to the lower-level problem lie in [−1�1] for all b≥ 0. More-
over,

V (b�x)− V (b�−x)= (b− 1)
(
e−(x+1)2 − e−(x−1)2

)
�

and so for b < 1, the value V (b�x) is greater for positive values of x than for
negative values; conversely, for b > 1, the value V (b�x) is greater for negative
values of x than for positive values. Thus, the optimal solution for b lies in
[0�1]. In sum, without loss of generality, we can impose the constraints b ∈
[0�1] and z ∈ [−1�1] and consider the following equivalent problem:

max
z�b

−(b− 2)2 − (z− 1)2(15)

s.t. z ∈ arg max
x∈[−1�1]

V (b�x)= be−(x+1)2 + e−(x−1)2�

b ∈ [0�1]�
Next, we approximate the function V by Chebyshev polynomials; see Ap-
pendix B. As a starting point, consider the Chebyshev polynomials of up to
degree 2,

T0(x)= 1� T1(x)= x� T2(x)= −1 + 2x2�

13To avoid a collision of notation, we denote the variable a in Mirrlees (1999) by b. Note that
this example lacks a participation constraint.
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with the interpolation nodes
√

3
2 �0�−

√
3

2 . At these interpolation nodes, the
agent’s utility function attains the values

V

(
b�

√
3

2

)
= e−7/4−√

3
(
b+ e2

√
3
)
�

V (b�0)= 1 + b
e
�

V

(
b�−

√
3

2

)
= e−7/4−√

3
(
1 + be2

√
3
)
�

Computing the Chebyshev interpolant yields

p2(b�x)=
(
e7/2 + e11/4−√

3 + e11/4+√
3
)
(b+ 1)

3e9/2 T0(x)

− e−7/4−√
3
(
e2

√
3 − 1

)
(b− 1)√

3
T1(x)

+ 1
3
e−5/2−√

3
(
e3/4 − 2e3/2+√

3 + e3/4+2
√

3
)
(b+ 1)T2(x)�

The maximal absolute approximation error satisfies

max
b∈[0�1]�x∈[−1�1]

∣∣V (b�x)−p2(b�x)
∣∣ ≤ 0�102007�

The plot in Figure 1 shows the approximation error |V (b�x) − p2(b�x)| for
b= 0. The global maximum of the approximation error is attained at the point
(b� z) = (0�1). Replacing the agent’s objective function V by its Chebyshev
approximation, we obtain the following optimization problem:

max
z�b

−(b− 2)2 − (z− 1)2(16)

s.t. z ∈ arg max
x∈[−1�1]

p2(b�x)�

b ∈ [0�1]�
z ∈ [−1�1]�

Now we apply the reformulation of Theorem 1 to this problem.14 Since p2 has
degree d = 2, we have D= 1 and so we need to define

Q(0) =
(
q11 q12

q12 q22

)
and Q(1) = u�

14Note that in this example, the variables z and b play the roles of a and w, respectively, in
Theorem 1.
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FIGURE 1.—The absolute error of the degree-2 Chebyshev approximation, |V (0�x) −
p2(0�x)|.

Thus, we have to compare the coefficients in the following expression:

−p2(b�x)− ρ= q11 + 2xq12 + x2q22 + u− ux2�

We obtain the following equalities:

b+ 1
e

+ ρ+ q11 + u= 0�

−e
−7/4−√

3
(
e2

√
3 − 1

)
(b− 1)√

3
+ 2q12 = 0�

2
3
e−5/2−√

3
(
e3/4 − 2e3/2+√

3 + e3/4+2
√

3
)
(b+ 1)+ q22 − u= 0�

The positive semidefiniteness conditions Q(0)�Q(1) � 0 yield the inequalities

q11q22 − q2
12 ≥ 0�

q11� q22�u≥ 0�

The final constraints are

−x2 + 1 ≥ 0� b≥ 0� b≤ 1�

Solving this relaxed problem, we obtain the solution

z = 1� b= 1�
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This solution is already fairly close to the correct solution, despite the rather
crude degree-2 Chebyshev approximation of the agent’s utility function.

Of course, to obtain a better solution, we need to reduce the approxima-
tion error. For this reason, we increase the degree of the approximation to 12.
Then we obtain an approximation parameterized by b, with an approximation
error of less than 5�5 · 10−8. Applying the polynomial approach, we obtain the
following solution:

z = 0�9575� b= 1�

which matches the optimal solution reported in Mirrlees (1999).
The Chebyshev approximation for the function V works extremely well in

this example. The exponential function is a so-called entire (analytic) func-
tion, since it can be globally expressed by a power series. The convergence
results for the Chebyshev approximation for entire functions are even better
than those reported in Appendix B for ν-times differentiable functions; see
Trefethen (2013). However, stating these result requires more mathematical
background.

5.2. Application: Executive Compensation Contracts

At least as early as in Haubrich (1994), principal–agent models have been
applied to the study of executive compensation contracts. Armstrong, Larcker,
and Su (2010) presented a sophisticated study of optimal compensation con-
tracts that emerge from principal–agent models with pure moral hazard, pure
adverse selection, or a combination thereof. They pointed out that “the first-
order approach typically fails when realistic contracting features (e.g., non-
linear compensation contracts and nonnormal probability distributions) are
incorporated in the model.” In order to avoid these difficulties, Armstrong,
Larcker, and Su (2010) restricted the agent to choose his action from a finite
set and allowed for mixed strategies. The resulting optimization problem is
an MPEC, a mathematical program with equilibrium constraints. Since stan-
dard solvers are not guaranteed to find globally optimal solutions of MPECs,
Armstrong, Larcker, and Su (2010) used different solvers with many different
starting points to solve problems hundreds of times.

We now consider a slightly modified version of the model with pure moral
hazard from Armstrong, Larcker, and Su (2010). A company hires an agent
(a CEO or other high-level executive). The agent chooses an action a ∈ [0�1]
(contrary to Armstrong, Larcker, and Su (2010), who imposed a finite set of
actions). This action influences the stock price p of the company, which is log-
normally distributed with the density

μ(p|a)= 1

pσ
√

2π
exp

(
−

(
ln(p)− ρ(a))2

2σ2

)
�
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where ρ(a) = aφ with the productivity parameter φ > 0. The principal offers
the agent a contract with a fixed salary w, restricted stock βS in the company,
and stock options βO with exercise price K. The monetary payoff to the agent
of a contract (w�βS�βO�K) at a stock price p is

s(w�βS�βO�K;p)=w+pβS +βO max(p−K�0)�

The agent has the utility function

v(s�a)= s1−δ

1 − δ − ca2�

The principal is assumed to be risk-neutral and maximizes the expected
net difference between the stock price p and the payment to the agent
s(w�βS�βO�K;p).

This model does not satisfy the assumptions of the polynomial optimization
approach, since the stock price has a lognormal distribution.15 To deal with this
issue, we first perform a change of variable, ℘ = lnp, with the new variable
℘ ∈ (−∞�∞). As a result, the expectation in the two expected utility functions
is now an integral on the set R. Thus, we can use Gauss–Hermite quadrature
to approximate the integral. We denote the nodes by ℘i, i = 1�2� � � � �N , and
the quadrature weights by qi, i = 1�2� � � � �N . Moreover, replacing p by ℘ in
the payoff function s and the density μ leads to the reparameterized functions
s̃ and μ̃, respectively. The resulting expected utility functions are

U(w�βS�βO�K�a)=
N∑
i=1

qiμ̃(℘i|a)
(
e℘i − s̃(w�βS�βO�K;℘i)

)
�

V
(
s(w�βS�βO�K�℘)�a

) =
N∑
i=1

qiμ̃(℘i|a)v
(
s̃(w�βS�βO�K�℘i)�a

)
�

Following Armstrong, Larcker, and Su (2010), we set the productivity param-
eter φ= 1

2 . After another change of variable, a= α1/φ, the resulting functions
in α are entire analytic. Thus, the Chebyshev approximation converges with
the order O(C−n) to V , for some constant C > 1. We set the agent’s reser-
vation utility to ¯V = v(1/2�0), his cost coefficient to c = 3

4 , and the scale pa-
rameter in the lognormal distribution to σ = 1

2 . The number of nodes for the
Gauss–Hermite quadrature is 10 and the degree of the Chebyshev approxima-
tion is 13. Following Armstrong, Larcker, and Su (2010), we setK exogenously

15In fact, as in our general model setup in Section 2, this model has a continuous probability
distribution of outcomes. The polynomial optimization approach can handle such models as well.
Note that the payment term s(w�βS�βO�K;p) now plays the role of the simple wage w in the
discrete model.
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TABLE II

NUMERICAL RESULTS FOR THE EXECUTIVE COMPENSATION PROBLEM

δ U∗ w∗ β∗
S β∗

O V ∗ a∗

1
8 1�227 0 0�067 0�829 1�143 0�847
1
4 1�151 0 0�230 0�584 1�333 0�734
1
2 1�045 0 0�441 0�240 2�000 0�587
1 0�924 0�122 0�526 0 0�000 0�443
2 0�800 0�413 0�391 0 −1�000 0�319
4 0�688 0�624 0�279 0 −0�333 0�225
8 0�593 0�762 0�196 0 −0�143 0�158

since stock options given to managers typically have a strike price set to the
current stock price. For the given lognormal distribution, we set it to the ex-
pected value for zero effort, a= 0, from the agent, that is, K = eσ

2/2. To illus-
trate the functions that are involved in the computation, Appendix C reports
the approximations of both utility functions.

Table II displays numerical solutions to the executive compensation prob-
lem for different values of the executive’s coefficient of risk aversion, δ. We
denote the principal’s and the agent’s maximal expected utilities from the op-
timal contract by U∗ and V ∗, respectively. For all values of the parameter δ,
the participation constraint is binding, V ∗ = v(1/2�0). The principal’s payoff
and the executive’s effort are both decreasing in δ. Unsurprisingly, the num-
ber of options, β∗

O , in the optimal contract is decreasing in the risk aversion
parameter, while conversely, the fixed wage w∗ is increasing in δ. The number
of shares, β∗

S , in the optimal contract is increasing in δ as long as options are
a part of the contract and the fixed wage is zero; shares replace options in the
optimal contract. For sufficiently large values of δ, options cease to be part of
the optimal contract and instead a fixed wage becomes part of the contract.
As δ increases, the wage increases and the number of shares decreases in the
optimal contract; now the fixed wage replaces stock holdings.

6. THE POLYNOMIAL OPTIMIZATION APPROACH FOR A⊂R
L

Principal–agent models in which the agent’s action set is one-dimensional
dominate not only the literature on the first-order approach but also the ap-
plied and computational literature; see, for example, Araujo and Moreira
(2001), Judd and Su (2005), and Armstrong, Larcker, and Su (2010). However,
the analysis of linear multi-task principal–agent models in Holmström and
Milgrom (1991) demonstrates that multivariate agent problems exhibit some
fundamental differences in comparison to the common one-dimensional mod-
els. For example, the compensation paid to the agent does not only serve the
dual purpose of incentive for hard work and risk-sharing but, in addition, influ-
ences the agent’s attention among his various tasks. The theoretical literature
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that allows the set of actions to be multidimensional, for example, Grossman
and Hart (1983), Kadan, Reny, and Swinkels (2011), and Kadan and Swinkels
(2012), focuses on the existence and properties of equilibria. To the best of
our knowledge, the first-order approach has not received much attention for
models with multidimensional action sets.16

We now extend our polynomial optimization approach to principal–agent
models in which the agent has more than one decision variable, so a ∈A⊂ R

L.
For this purpose, we state and prove a generalization of Theorem 1 and subse-
quently illustrate the multidimensional approach by a numerical example. We
refer to Appendix A.2 for some mathematical background on the optimization
of multivariate polynomials.

6.1. The Multivariate Polynomial Optimization Approach

Consider the principal–agent problem with a multidimensional set of ac-
tions, A ⊂ R

L, and a finite set S of cardinality N . We impose the following
assumption.

ASSUMPTION 5—Set of Actions: The set of actions, A = {a ∈ R
L | g1(a) ≥

0� � � � � gm(a)≥ 0}, is a compact semi-algebraic set with a nonempty interior.

A multidimensional version of Assumption 4, the assumption that the agent
has a rational expected utility function, imposes

−V (w�a)= −
N∑
i=1

v(wi�a)μ(si|a)=

∑
α

cα(w)aα

∑
α

fα(w)aα
�

Applying the rational generalization of the relaxation (25) from Appen-
dix A.2.1 to the agent’s expected utility optimization problem, we obtain the
following relaxation for that problem:

sup
ρ�Q(0)�Q(1)�����Q(m)

ρ(17)

s.t.
∑
α

cα(w)bα − ρ
∑
α

fα(w)bα

= vTdQ(0)vd +
m∑
i=1

giv
T
d−dgiQ

(i)vd−dgi �

16Abraham, Koehne, and Pavoni (2011) derived sufficient conditions for the application of the
first-order approach in a model in which the agent has two decision variables, effort and savings.
Only the chosen effort level affects the probability distribution of outcomes.
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Q(0) � 0� Q(i) � 0 ∀i= 1�2� � � � �m�

Q(0) ∈R(
n+d
d )×(n+dd )�

Q(i) ∈R
(n+d−dgid−dgi

)×(n+d−dgid−dgi
) ∀i= 1�2� � � � �m�

vd vector of monomials bα up to degree d�

vd−dgi vector of monomials bα up to degree d− dgi �

The equality in the first constraint signifies an equality of the polynomials on
the left-hand and right-hand side in the variables b. So, once again, we need to
equate the coefficients of two polynomials. These equations, in turn, are poly-
nomials in the matrix elements Q(l)

ij , l = 0�1� � � � �m, and the variable ρ. Next
we use Proposition A.1 from the Supplemental Material and replace the pos-
itive semidefinite matrices Q(i) by L(i)(L(i))T , where L(i) are lower triangular
matrices (with a nonnegative diagonal). This transformation allows us to drop
the explicit constraints on positive semidefiniteness.

For a reformulation of the original principal–agent problem from a bilevel
problem to a nonlinear program, we need to characterize the optimal choice of
the agent via equations or inequalities. In the case of one-dimensional effort,
this reformulation is (12.d), the generalization of which for multidimensional
effort would be

d∑
i=0

ci(w)ai − ρ
(

d∑
i=0

fi(w)ai
)

= 0�

Unfortunately, since the relaxation of the agent’s problem gives us a lower
bound, we cannot, in general, impose this constraint. The resulting nonlinear
program would most likely be infeasible. Instead, we use an idea of Couzoudis
and Renner (2013), who allowed for solutions of optimization problems to be
only approximately optimal; we do not force the left-hand side to be zero but
instead only impose a small positive upper bound.

Now we are in the position to state and prove our second theorem, a multi-
variate extension of Theorem 1.

THEOREM 2: Suppose the agent’s expected utility maximization problem sat-
isfies Assumption 5 and the multidimensional version of Assumption 4. Let
vk be the vector of monomials in b1� � � � � bL up to degree k. Let d ∈ N and
ε > 0. Including ρ ∈ R and lower triangular matrices L(0) ∈ R(

n+d
d )×(n+dd ) and

L(i) ∈ R
(n+d−dgid−dgi

)×(n+d−dgid−dgi
)

for i= 1� � � � �m, as additional decision variables, define
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the following relaxation of the principal–agent problem (1):

max
w�a�ρ�L(0)�����L(m)

U(w� a)(18)

s.t.
∑
α

cα(w)bα − ρ
∑
α

fα(w)bα(18.a)

= vTdL(0)L
T
(0)vd +

m∑
i=1

givTd−dgi L(i)L
T
(i)vd−dgi �

ε
∑
α

fα(w)aα ≥
∑
α

cα(w)aα − ρ
∑
α

fα(w)aα�(18.b)

d∑
i=0

ci(w)ai ≤ −¯V
(

d∑
i=0

fi(w)ai
)
�(18.c)

gi(a)≥ 0 ∀i= 1�2� � � � �m�(18.d)

w ∈W �(18.e)

This optimization problem has the following properties:
(1) Any feasible point, (ŵ� â� ρ̂� L̂(0)� � � � � L̂(m)), satisfies the inequality

max
a∈A

V (ŵ�a)− V (ŵ� â)≤ ε�(19)

(2) Let (w̄� ā) be a feasible solution of the principal–agent problem (1).
Then, for any ε > 0, there exist d(ε) ∈ N and ρ̄� L̄(0)� � � � � L̄(m), such that
(w̄� ā� ρ̄� L̄(0)� � � � � L̄(m)) is feasible for the relaxation (18) for d = d(ε).

(3) Let (w̄� ā) be an optimal solution to (1). For any ε, let d(ε) be as in point
(2). Denote by u(ε) the optimal objective value of the relaxation (18) for given ε
and d = dε. Then limε→0+ u(ε)=U(w̄� ā).

(4) Again, let (w̄� ā) be an optimal solution to (1), and for any ε, let d(ε)
be as in point (2). Then, the set of limit points for ε → 0+ of any sequence of
optimal solutions to (18), (w∗(ε)�a∗(ε)�ρ∗(ε)�L∗

(0)(ε)� � � � �L
∗
(m)(ε)), projected

onto W ×A, is contained in the set of optimal solutions to the original principal–
agent problem (1).

Before we prove the theorem, we briefly describe the optimization problem
(18). This problem has the same objective function as the original principal–
agent problem (1). Constraint (18.a) uses a sum of squares representation of
positive polynomials to ensure that for a contract w chosen by the principal,
−V (w�a) ≥ ρ for all a ∈ A. It is important to emphasize that this equation
holds not only for the optimal choice but in fact for all possible a ∈A. There-
fore, for the purpose of this constraint, we need to duplicate the effort vector a;
in the functional equation (18.a), we denote effort by b. Thus again b is not a
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variable in the optimization problem. We obtain the equations by comparing
the coefficients of the polynomials in b. The positive semidefinite matrices in
the relaxation of the agent’s problem (17) are represented via products of lower
triangular matrices. Proposition A.1 in the Supplemental Material shows that
any positive semidefinite matrix can be represented in this fashion (even hav-
ing the property that all diagonal elements are nonnegative). Put differently,
constraint (18.a) ensures that −ρ is an upper bound on the agent’s possible
expected utility levels. Next, constraint (18.b) imposes a lower bound on the
agent’s expected utility level, namely, V (w�a)+ ε ≥ −ρ. Therefore, the con-
straints (18.a) and (18.b) force the value of a in any feasible solution to result
in a utility for the agent satisfying −ρ− ε≤ V (w�a)≤ −ρ. That is, for a given
contract w, the first two constraints ensure an effort choice by the agent that
is within ε of being optimal. The last three constraints are straightforward.
Constraint (18.c) is the transformed participation constraint for the agent’s ra-
tional expected utility function. Constraint (18.d) defines the set of the feasible
actions and constraint (18.e) is just the constraint on the compensation scheme
from the original principal–agent problem (1).

PROOF OF THEOREM 2: Under the assumptions of the theorem, the agent’s
constraints satisfy the conditions of Putinar’s Positivstellensatz and so we ob-
tain the sums-of-squares representation for the agent’s problem. For fixed d,
we then restrict the degree of the sum of squares coefficients as is done in the
relaxation.

(1) Every feasible point (ŵ� â� ρ̂�L(0)� � � � �L(m)) provides an upper bound
−ρ̂ on the maximal value of V (ŵ�a)= −

∑
α cα(ŵ)a

α∑
α fα(ŵ)aα

, since (18.a) implies that

∑
α

cα(w)bα − ρ̂
∑
α

fα(w)bα ≥ 0

and so, −ρ̂ ≥ maxa∈A V (ŵ�a) ≥ V (ŵ� â). Moreover, constraint (18.b) implies
that

ε≥ −ρ̂− V (ŵ� â)≥ max
a∈A

V (ŵ�a)− V (ŵ� â)�

Thus, property (19) holds.
(2) Under the assumptions of the theorem, Proposition A.5 from the Sup-

plemental Material implies that for each fixed w̄ and a given ε > 0, there exists
a d such that V (w�a)− ρ has the representation (21) of Putinar’s Positivstel-
lensatz with degree d coefficients. For this d, problem (18) has a nonempty
feasible region.

(3) Recall the agent’s optimal value function Ψ :W → R from the proof of
Proposition 1. The projection of the set of feasible points of problem (18) to
W ×A is a subset of

S(ε)= {
(w�a) ∈W ×A |Ψ(w)− V (w�a)≤ ε}
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and, by point (2), contains (w̄� ā). Let v(ε)= max(w�a)∈S(ε) U(w�a). Then

U(w̄� ā)≤ u(ε)≤ v(ε)�
Furthermore, sinceΨ and V are continuous (Berge’s Maximum Theorem), the
set S(ε) is upper hemicontinuous and uniformly compact near 0.17 By Hogan
(1973, Theorem 5), it follows that v is upper semi-continuous and thus we have

U(w̄� ā) ≤ lim inf
ε→0+ u(ε)≤ lim sup

ε→0+
u(ε)

≤ lim sup
ε→0+

v(ε)≤ v(0)=U(w̄� ā)�

Therefore, limε→0+ u(ε)=U(w̄� ā).
(4) Consider any limit point (w0�a0) ∈ W × A and any sequence (wε�aε)

converging to it for ε→ 0. Property 2 implies that U(wε�aε)→ U(w̄� ā). By
continuity of Ψ and V , we also have

lim
ε→0+

(
Ψ(wε)− V (wε�aε)

) =Ψ(w0)− V (w0�a0)= 0�

Thus, (w0�a0) is feasible for (1) and attains the optimal value.
This completes the proof of Theorem 2. Q.E.D.

Some comments on the technical convergence results of Theorem 2 are in
order. For the one-dimensional effort case, Theorem 1 provides a single well-
defined optimization problem that is equivalent to the original principal–agent
problem. Ideally, we would like to obtain a similar result for the multidimen-
sional effort case. Unfortunately, in general, that is impossible. A comparison
of the sum of squares representation results for univariate and multivariate
polynomials reveals the critical difference between the two cases. Proposition 2
in Section 3.2, the “Positivstellensatz” for univariate polynomials, provides a
sum of squares representation of nonnegative univariate polynomials with an
explicit (small) bound on the degree of the involved sums of squares. Proposi-
tion A.2 in the Supplemental Material, Putinar’s Positivstellensatz, provides a
sum of squares representation of positive multivariate polynomials; however,
there is no a priori upper bound on the degree of the involved sums of squares.
In fact, from a purely theoretical viewpoint, the necessary degree may be in-
finite. As a result, any finite-degree representation as in (24) in the Supple-
mental Material may only constitute a relaxation of the original polynomial
optimization problem.

Once we have computed a solution, we can always verify if it is feasible. To
accomplish this, we fix w and solve the polynomial optimization problem for
the agent to global optimality using GloptiPoly.

17Upper hemicontinuity at 0 means that for any sequence εk → 0, sk ∈ S(εk) and sk → s imply
s ∈ S(0).
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In light of the theoretical difficulties for general multivariate polynomials, it
is of great interest to characterize polynomial optimization problems that offer
a guaranteed convergence of the relaxation for finite d. If both the objective
function and the constraints are s.o.s. convex, then the convergence is finite;
see Lasserre (2010, Theorem 5.15).18 Also, if the objective function is strictly
convex and the constraints are convex, then convergence is finite; see Lasserre
(2010, Theorem 5.16). The problem of finite convergence continues to be an
active research issue in algebraic geometry. For example, Nie (2012) proved fi-
nite convergence under a regularity condition on the set of constraints. His ap-
proach requires a reformulation of the problem by adding constraints consist-
ing of minors of a Jacobian derived from the KKT conditions. Unfortunately, it
appears to be rather difficult to check the regularity condition in applications.

As a final remark, we point out that Schmüdgen’s Positivstellensatz (see
Schmüdgen (1991)) yields a representation of multivariate positive polynomi-
als that is different than that of Putinar’s Positivstellensatz. This representation
is slightly more general but requires higher degree sums of squares. Therefore,
it appears to be less attractive for economic applications.

6.2. Multivariate Examples

In the following, we show the results from two applications of the multivari-
ate polynomial optimization approach. The first example is deliberately simple
so that the functions and constraints for a numerical solution of the multivari-
ate problem are straightforward. The second application tackles a production
problem from the economics literature.

6.2.1. Illustrative Example

Let the set of outcomes be {0�3�6} with probabilities{
1 + a/2 + b
1 + a+ b �

b

1 + a+ b�
a/2 − b

1 + a+ b
}
�

satisfying the constraints

b≥ 0� a− 2b≥ 0�

which assure that the probability functions are nonnegative. The outcome dis-
tribution has mean and variance

3(a− b)
1 + a+ b and

9
(
2a+ a2 − 3b+ ab− 4b2

)
(1 + a+ b)2 �

18A polynomial f is called s.o.s. convex, iff ∇2f =WW T for some matrix W .
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respectively. Note that the effort a increases both the expected value and the
variance of the outcome. On the contrary, the effort b decreases the expecta-
tion and the variance.

The principal’s and the agent’s Bernoulli utility functions are

u(y�w)= −(−6 −w+ y)2 and

v(a�b�w)= (1 + a+ b)
(

−a− b

10
+ ln (1 +w)

)
�

respectively. The expected utility of the agent is

1
10

(−10a− 10a2 − b− 11ab− b2 + 10b ln (1 +w2)

+ 5(a− 2b) ln (1 +w3)
) +

(
1 + a

2
+ b

)
ln (1 +w1)

and the expected utility of the principal is

−(
a
(
36 + 12w1 +w2

1 +w2
3

)
+ 2

(
(6 +w1)

2 + b(45 + 12w1 +w2
1 + 6w2 +w2

2 −w2
3

)))
/
(
2(1 + a+ b))�

In sum, in the principal–agent problem, the lower-level problem has an objec-
tive function that is polynomial in the agent’s decision variables a and b, but
nonpolynomial in the principal’s decision variables w1�w2�w3. The upper-level
problem is rational in a�b and polynomial in w1�w2�w3. And so we can apply
Theorem 2 and reformulate the principal–agent problem.

We observe that the largest degree in the variables a and b is 2. So, we can
choose the degree of the relaxation to be 2, that is, all the matrices appearing
will be of size 3 × 3, Lk = (sk�i�j)i�j=1�2�3, where Lk is a lower triangular matrix
with nonnegative diagonal. The sum of squares multipliers now appear as fol-
lows:

σk = s2
k�1�1 + 2ask�1�1sk�2�1 + a2

(
s2
k�2�1 + s2

k�2�2

) + 2bsk�1�1sk�3�1

+ b2
(
s2
k�3�1 + s2

k�3�2 + s2
k�3�3

) + ab(2sk�2�1sk�3�1 + 2sk�2�2sk�3�2)�

Thus, the coefficients in the variables a�b of the following polynomial have to
be zero:

V (a�b�w1�w2�w3)+ ρ+ σ0 + bσ1 + (a− 2b)σ2 + (1 − a)σ3�
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This leads to the following equations:

0 = s2
1�3�1 + s2

1�3�2 + s2
1�3�3 − s2

2�3�1 − s2
2�3�2 − s2

2�3�3�

0 = 1
2
(
s2

2�2�1 + s2
2�2�2

) − s2
3�2�1 − s2

3�2�2�

0 = −1 + s2
0�2�1 + s2

0�2�2 + s2�1�1s2�2�1 − 2s3�1�1s3�2�1 + s2
3�2�1 + s2

3�2�2�

0 = s2
1�2�1 + s2

1�2�2 − s2
2�2�1 − s2

2�2�2 + s2�2�1s2�3�1

+ s2�2�2s2�3�2 − 2(s3�2�1s3�3�1 + s3�2�2s3�3�2)�

0 = −11
10

+ 2(s0�2�1s0�3�1 + s0�2�2s0�3�2)+ 2s1�1�1s1�2�1 − 2s2�1�1s2�2�1

+ s2�1�1s2�3�1 − 2s3�1�1s3�3�1 + 2(s3�2�1s3�3�1 + s3�2�2s3�3�2)�

0 = 2(s1�2�1s1�3�1 + s1�2�2s1�3�2)− 2(s2�2�1s2�3�1 + s2�2�2s2�3�2)

+ 1
2
(
s2

2�3�1 + s2
2�3�2 + s2

2�3�3

) − s2
3�3�1 − s2

3�3�2 − s2
3�3�3�

0 = − 1
10

+ s2
0�3�1 + s2

0�3�2 + s2
0�3�3 + 2s1�1�1s1�3�1

− 2s2�1�1s2�3�1 + s2
3�3�1 + s2

3�3�2 + s2
3�3�3�

0 = ρ+ s2
0�1�1 + s2

3�1�1 + ln (1 +w1)�

0 = − 1
10

+ 2s0�1�1s0�3�1 + s2
1�1�1 − s2

2�1�1 + 2s3�1�1s3�3�1

+ ln (1 +w1)+ ln (1 +w2)− ln (1 +w3)�

0 = −1 + 2s0�1�1s0�2�1 + s2
2�1�1

2
− s2

3�1�1 + 2s3�1�1s3�2�1

+ 1
2

ln (1 +w1)+ 1
2

ln (1 +w3)�

We set the reservation utility to 3
2 and solve this problem with large-scale NLP

solver IPOPT; see Wächter and Biegler (2006). As of the writing of this paper,
we cannot apply GloptiPoly to this problem since the number of variables is
too large. Therefore, we do not approximate the logarithmic terms but leave
them in the optimization problem for IPOPT. We obtain the following solu-
tions:

a= 0�34156� b= 0�17078� w1 = 2�7295�

w2 = 4�0491� 10 ≥w3 ≥ 0�
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Note that a− 2b= 0 and so the third outcome has probability zero. Therefore,
there are a continuum of possible values forw3. The principal’s expected utility
is −73�210 and the agent’s expected utility is 3

2 . (In this example, it is possible
to compute the solution for ε = 0 since, for quadratic multivariate polynomi-
als, the sets of sums of squares and nonnegative polynomials are identical; see
Appendix A.2.)

6.2.2. Application: Technology Moral Hazard Program

The following application is a nonlinear extension of the linear-effort ex-
ample from Prescott (2004, Section 4.3). The principal is very averse to low
output, which is reflected in her discontinuous utility function

u(c�q)=
{
q− c− 20� q≤ 0�21,
q− c� q > 0�21.

The principal offers a consumption function c :R → R as a contract to the
agent with consumption depending on the output q produced by the agent.
The agent has a production technology and he controls the mean and the stan-
dard deviation of the stochastic output. The agent is risk-averse and receives
disutility from increasing the mean or lowering the standard deviation of the
output distribution. We replace the linear disutility terms in the Prescott (2004)
example by nonlinear expressions and choose as the agent’s utility

v(c�am�as)= √
c− a2

m +
√
as + 1�

with am and as denoting the agent’s choices for the mean and the standard
deviation of output, respectively.

Following Prescott (2004), we discretize the output levels on the interval
[0�2] and approximate a normal distribution of the output. Let (wi� qi)i=1�2�����N

denote the Gauss–Legendre weights and nodes on the interval [0�2]. The out-
put distribution over {q1� � � � � qN} is as follows:

P(q= qi|am�as)= wi√
2πa2

s

exp
(

−(wi − am)
2

2a2
s

)

/ (
N∑
j=1

wj√
2πa2

s

exp
(

−(wj − am)
2

2a2
s

))
�

(Prescott (2004) implicitly used a similar distribution, however, with equi-
distant points and no weights.) We obtain the following expected utility for
the principal:∑

j

P(q= qj|am�as)
(
qj − cj − 20 · 1≤0�21(qj)

)
�
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where 1≤0�21(qj) denotes the indicator function. The agent’s expected utility is∑
j

P(q= qj|am�as)√cj − a2
m +

√
as + 1�

Again following Prescott (2004), we compactify the agent’s effort set and im-
pose the following constraints:

0 ≤ am ≤ 1�5�

0�3 ≤ as ≤ 0�6�

As a reservation utility, we choose maxam≥0�av≤0�6 v(0� am�as) = √
0�6 + 1 ≈

1�26491.
We use the tensor product of the Chebyshev polynomials to approximate the

agent’s utility function with degree pair (5�5). More precisely, let xi denote the
Chebyshev nodes for degree 5 approximation. Then, after a suitable change of
coordinates, we approximate the agent’s function on the grid (xi� xj)i�j=0�����5

with basis functions {Ti ⊗ Tj}i�j=0�����5. In particular, the maximum degree of the
basis polynomials is 10. We use 12 nodes for the definition of the probability
distribution. And lastly, we choose 12 as the degree for the relaxation. These
choices result in the optimal solution displayed in Table III.

Since the principal is very averse to low output, she pays nothing to the agent,
c = 0, both for the four lowest and the four highest output levels. Such a com-
pensation scheme encourages the agent to choose the output standard devia-
tion, as, as low as possible in order to minimize the probability of an extreme
outcome. In addition, the agent chooses the output mean, am, so that the four

TABLE III

NUMERICAL SOLUTION TO THE PRODUCTION PROBLEM

am as Obj. Agent Obj. Principal

0.750 0�3 2�000 −2�394

i 1 2 3 4
ci 0 0 0 0
P(qi|am�as) 0�0216 0�0516 0�0836 0�1147

i 5 6 7 8
ci 1�5759 5�1741 5�0364 0�3421
P(qi|am�as) 0�1385 0�1477 0�1387 0�1153

i 9 10 11 12
ci 0 0 0 0
P(qi|am�as) 0�0855 0�0569 0�0328 0�0132
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outcomes for which he receives a positive compensation have the highest prob-
abilities.

7. CONCLUSION

In this paper, we have presented a polynomial optimization approach to
moral hazard principal–agent problems. Under the assumption that the agent’s
expected utility function is a rational function of his effort, we have reformu-
lated the agent’s maximization problem as an equivalent system of equations
and inequalities. This reformulation allowed us to transform the principal–
agent problem from a bilevel optimization problem to a nonlinear program.
Furthermore, under the assumptions that the principal’s expected utility is
polynomial and the agent’s expected utility is rational in wages (as well as mild
assumptions on the effort set and the set of wage choices), we have shown
that the resulting NLP is a polynomial optimization problem. Therefore, tech-
niques from global polynomial optimization enable us to solve the NLP to
global optimality. We have also shown how to apply the polynomial approach
to nonpolynomial problems using Chebyshev approximations of nonpolyno-
mial Bernoulli utility and probability functions.

After the analysis of principal–agent problems with a one-dimensional effort
choice for the agent, we have also presented a polynomial optimization ap-
proach for problems with multidimensional effort sets. The solution approach
for solving such multidimensional problems rests on the same ideas as the ap-
proach for the one-dimensional effort model; however, it is technically more
difficult. For multidimensional problems, we cannot provide an exact reformu-
lation of the agent’s problem but only a relaxation of that problem. Despite this
theoretical limitation, the relaxation appears to be often exact in applications.

Our polynomial optimization approach has a number of attractive features.
First, we need neither the Mirrlees–Rogerson (or Jewitt) conditions of the clas-
sical first-order approach nor the assumption that the agent’s utility function
is separable. We also do not need to assume that the principal is risk-neutral.
Second, under the additional aforementioned assumptions on the utility func-
tions, the final NLP is a polynomial problem that can be solved to global opti-
mality without concerns about constraint qualifications. Third, unlike the first-
order approach, the polynomial approach extends quite generally to models
with multidimensional effort sets.

The technical assumptions underlying the polynomial approach, while lim-
iting, are not detrimental. The most serious limitation of our polynomial op-
timization approach is that it is not suited for a subsequent traditional the-
oretical analysis of the principal–agent model. Despite this shortcoming, the
polynomial approach can serve as a useful tool to examine the generality of
the insights derived from the very restrictive first-order approach. The ability
of the approach to find global solutions to principal–agent problems is one of
its hallmarks.
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