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numerical optimization methods in
economics
Optimizing agents are at the centre of most economic
models. In our models we typically assume that con-
sumers maximize utility or wealth, that players in a game
maximize payoffs, that firms minimize costs or maximize
profits, or that social planners maximize welfare. But it is
not only the agents in our models that optimize. Econo-
metricians maximize likelihood functions or minimize
sums of squares. Clearly optimization is one of the key
techniques of modern economic analysis.

The optimization problems that appear in economic
analysis vary greatly in nature. We encounter finite-
dimensional problems such as static utility maximization
problems with a few goods. An optimal solution to such a
problem is a finite-dimensional vector. We analyse infi-
nite-dimensional problems such as infinite-horizon social
planner models or continuous-time optimal control
problems. Here the solution is an infinite-dimensional
object, a vector with countably infinitely many elements
or even a function over an interval. Our agents may face
constraints such as budget equations, short-sale restric-
tions or incentive-compatibility constraints. There are
also unconstrained problems such as nonlinear least-
square problems. Decision variables may even be
restricted to be discrete. Agents’ objective functions may
be linear or nonlinear, convex or nonconvex, many times
differentiable or discontinuous. Finally, an economic
optimization problem may be deterministic or stochastic.

Unless we consider stylized models in theoretical work
or make very stringent and often quite unrealistic assump-
tions in applied models, the optimization problems that
we encounter cannot be solved analytically. Instead we
need to resort to numerical methods. The numerical
methods that we employ to solve economic optimization
models vary just as much as the optimization problems
we encounter. It is therefore impossible to cover the
wide variety of numerical optimization methods that are
useful in economics in a short article. For the purpose of
the exposition here we focus on deterministic finite-
dimensional nonlinear optimization problems including
linear programs. This is a natural choice because such
problems are ubiquitous in economic analysis. Moreover,

the techniques for these problems play also an important
part in many other numerical methods such as those for
solving economic equilibrium and infinite-dimensional
problems. The interested reader should consult COMPUTA-

TION OF GENERAL EQUILIBRIA (NEW DEVELOPMENTS), COMPUTA-

TIONAL METHODS IN ECONOMETRICS and DYNAMIC PROGRAMMING.
We first indicate some of the fundamental technical

difficulties that we need to be aware of when we apply
numerical methods to our economic optimization prob-
lems. We then highlight the basic theoretical founda-
tions for numerical optimization methods. The popular
numerical optimization methods have strong theoretical
foundations. Unfortunately, current textbooks in com-
putational economics, with the partial exception of Judd
(1998), neglect to emphasize these foundations. As a
result some economists are rather sceptical about
numerical methods and view them as rather ad hoc
approaches. Instead, a good understanding of the the-
oretical foundations of the numerical solution methods
gives us an appreciation of the capabilities and limita-
tions of these methods and can guide our choice of
suitable methods for a specific economic problem. We
outline the most fundamental numerical strategies that
form the basis for most algorithms. All presented
numerical strategies are implemented in at least one of
the those computer software packages for solving opti-
mization problems that are most popular in economics.
We close our discussion with a look at mathematical
programs with equilibrium constraints (MPECs), a
promising research area in numerical optimization that
has useful applications in economics.

1 Newton’s method in one dimension
We start with the one-dimensional unconstrained opti-
mization problem

min
x2R

f ðxÞ. (1)

Perhaps the first (if any) numerical method that most of
us learnt in our calculus classes is Newton’s method.
Newton’s method attempts to minimize successive quad-
ratic approximations to the objective function f in the
hope of eventually finding a minimum of f. To start the
computations we need to provide an initial guess x(0). The
quadratic approximation q(x) of f(x) at the point x0 is

qðxÞ ¼ f ðx0Þ þ f 0ðxð0ÞÞðx � xð0ÞÞ

þ 1

2
f 00ðxð0ÞÞðx � xð0ÞÞ2

where f 0 and f 00 denote the first and second derivative
of the function f, respectively. Solving the first-order
condition

q0ðxÞ ¼ f 0ðxð0ÞÞ þ f 00ðxð0ÞÞðx � xð0ÞÞ ¼ 0
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on the assumption that f 00ðxð0ÞÞa0 yields the solution

xð1Þ ¼ xð0Þ � f 0ðxð0ÞÞ
f 00ðxð0ÞÞ .

Now we repeat this process using a quadratic approxi-
mation to f at the point x(1). The result is a sequence of
points, fxðkÞg ¼ xð0Þ; xð1Þ; xð2Þ; . . . ; xðkÞ; . . ., that we hope
will converge to the solution of our minimization prob-
lem. This approach is based on the following theoretical
result.

Theorem Suppose x� is the solution to the minimization
problem (1). Suppose further that f is three times con-
tinuously differentiable in a neighborhood of x� and that
f 00ðxnÞa0. Then there exists some d40 such that if
jxn � xð0Þj od, then the sequence {x(k)} converges quad-
ratically to x�, that is,

lim
k!N

jxðkþ1Þ � xnj
jxðkÞ � xnj2

¼ k

for some finite constant k. &

We illustrate this theorem with a simple example.

Example 1 A consumer has a utility function uðx; yÞ ¼
ln ðxÞ þ 2 ln ðyÞ over two goods. She can spend $1 on
buying quantities of these two goods, both of which have
a price of $1. After substituting the budget equation,
x+y=1, into the utility function the consumer wants to
maximize f ðxÞ ¼ ln ðxÞ þ 2 ln ð1 � xÞ. Setting the first
order condition equal to 0 yields the solution xn ¼ 1

3.
(This quantity is globally optimal because the function f
is strictly concave.)

Suppose we start Newton’s method with the initial
guess x(0)=0.5. Then the first Newton step yields

xð1Þ ¼ 0:5 � f 0ð0:5Þ
f 00ð0:5Þ ¼ 0:5 � �2

�12
¼ 1

3
.

Newton’s method found the exact optimal solution in
one step. This (almost) never happens in practice. Much
more usual is the behaviour we observe when we start
with x(0) = 0.8. Then Newton’s method delivers as its first
five steps

0:63030303; 0:407373702; 0:328873379;

0:333302701; 0:333333332.

We observe that the sequence rapidly converges to the
optimal solution. The corresponding errors |x(k)�x�|,

0:2969697; 0:07404037; 0:00445995;

3:0632 � 10�5; 1:4078 � 10�9

converge to but never exactly reach zero. The rate of
convergence is called quadratic since jxðkþ1Þ � xnj o
LjxðkÞ �xnj2 for some constant L once k is sufficiently
large. &

But, of course, contrary to this simple example, we
typically do not know x� and so cannot compute the
errors |x(k) � x�|. Instead, we need a stopping rule that
indicates when the procedure terminates. The require-
ment that f 0ðxðkÞÞod may appear to be an intuitive
stopping rule. But that rule may be insufficient for func-
tions that are very ‘flat’ near the optimum and have large
ranges of non-optimal points satisfying this rule. There-
fore, a safer stopping rule requires both f 0ðxðkþ1ÞÞod and
jxðkþ1Þ � xðkÞj o e ð1 þ jxðkÞj Þ for some pre-specified
small error tolerance e,d40. So the Newton method ter-
minates once two subsequent iterates are close to each
other and the first derivative almost vanishes.

Observe that Newton’s method found a maximum,
and not a minimum, of the utility function. The reason
for this fact is that this method does not search directly
for an optimizer. Note that the key step in the algorithm
is finding a stationary point of the quadratic approxi-
mation q(x), that is, a point satisfying q0(x) = 0. Before we
can claim to have found a maximum or minimum of f we
need to do more work. In this example the strict con-
cavity of the utility function ensures that a stationary
point of f yields a maximum. So an assumption of our
economic model assures us that the numerical method
indeed finds the desired maximum.

Example 2 Consider the simple polynomial function
f ðxÞ ¼ xðx � 2Þ2. Starting with x(0)=1 leads to the
sequence

0:5; 0:65; 0:666463415; 0:666666636; . . .

converging to 2
3. Starting with x(0)=1.5 leads to the

sequence

2:75; 2:198529412; 2:022777454; 2:000376254

converging to 2. Neither of these two points yields a
global optimum, the function f is actually unbounded
above and below. The point 2

3 is a local maximizer
(f 00ð2=3Þ ¼ �4o0) while 2 is a local minimizer
(f 00ð2Þ ¼ 440). The stationary point that we find greatly
depends on our initial guess. &

Our simple observations about the behaviour of New-
ton’s method for one-dimensional optimization problems
apply in practice to higher-dimensional nonlinear opti-
mization problems and to almost all optimization meth-
ods. We will almost always face these fundamental issues
in our economic applications. First, most practical opti-
mization methods for unconstrained problems search
only for a stationary point (with possibly additional
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favourable properties). They do not directly attempt to
compute an optimizer. Second, as a result, most practical
methods may terminate with a non-optimal point. To
ensure global optimality we need to perform additional
checks. Third, it is rather unusual in practice to explicitly
solve for an exact solution. Usually we can only hope for a
sequence of points {x(k)} generated by an iterative process
that converges to a limit having some desired property.
Therefore, we need a stopping rule that indicates when
the iterative process stops. Fourth, the algorithm may not
terminate and diverge even if a globally optimal solution
exists.

Newton’s method is a special instance of a family of
methods for solving multidimensional optimization
problems. Before we examine more general methods
we provide some basic intuition for the theoretical
underpinnings of these solution methods.

2 Theoretical foundation: Taylor’s theorem
The gradient of the function f at a point x ¼ ðx1; x2; . . . ;
xnÞ is the column vector

rf ðxÞ ¼ @f

@x1
ðxÞ; . . . ; @f

@xn
ðxÞ

� �>

of partial derivatives of f with respect to the variables
x1, x2,y, xn. The Hessian of f at x is the (n� n)-matrix

HðxÞ ¼ @2f

@xi@xj
ðxÞ

� �n

i;j¼1

of the second derivatives @2f
@xi@xj

ðxÞ of f. The inner product
of two (column) vectors x; y 2 Rn is denoted by x>y.

Many numerical methods rely on linear or quadratic
approximations of the function f. Taylor’s theorem pro-
vides a justification for this approach. Here we give a
simple version of this theorem for functions with Lipschitz
continuous derivatives. Consider a function F : X ! Y
for open sets X 
 Rn and Y 
 Rm. Then F is Lipschitz
continuous at x A X if there exists a constant g(x) such
that

kFðyÞ � FðxÞk � gðxÞky � xk

for all y A X, where || � || denotes the standard Euclidean
norm.

Theorem Suppose the function f : X ! R is continu-
ously differentiable on the open set X 
 Rn and that the
gradient function rf is Lipschitz continuous at x with
Lipschitz constant gl(x). Also suppose that for s 2 Rn the
line segment x+ ys A X for all y A [0,1]. Then, the linear
function l with lðsÞ ¼ f ðxÞ þ rf ðxÞ>s satisfies

jf ðx þ sÞ � lðsÞj � 1

2
glðxÞksk2.

Moreover, if f is twice continuously differentiable on X
and the Hessian H is Lipschitz continuous at x with
Lipschitz constant gq(x), then the quadratic function q
with qðsÞ ¼ f ðxÞ þ rf ðxÞ>sþ 1

2s
>HðxÞs satisfies

jf ðx þ sÞ � qðsÞj � 1

6
gqðxÞksk3.

&

3 Unconstrained optimization
The multidimensional generalization of the uncon-
strained optimization problem (1) is given by

min
x2Rn

f ðxÞ. (2)

Solving this optimization problem entails finding a glo-
bal minimizer x� satisfying f ðxnÞ � f ðxÞ for all x 2 Rn.
With the exception of a few algorithms for problems that
are either very small or have very special structure, there
are no algorithms that are guaranteed to find a global
minimum. Thus, we need to think in terms of local
minima. A local minimizer is a point x� that satisfies
f ðxnÞ � f ðxÞ for all x 2 NðxnÞ where NðxnÞ denotes a
neighborhood of x�. The point x� is called an isolated
local minimizer if it is the only local minimizer in
NðxnÞ.

All these definitions by themselves are not all that
helpful for finding a minimum. Instead, just as Newton’s
method in one dimension does, all practical numerical
methods for unconstrained optimization problems rely
on optimality conditions to find candidates for local
minima. For functions with sufficient differentiability
properties these are the following well-known conditions.

Theorem [Optimality conditions for unconstrained
minimization]

1. If f is continuously differentiable and x� is a local
minimizer of f, then rf(x�) = 0.

2. If f is twice continuously differentiable and x� is a
local minimizer of f, then rf(x�) = 0 and s>HðxnÞs �
0 for all s 2 Rn.

3. If f is twice continuously differentiable and if x� sat-
isfies rf(x�) = 0 and s>HðxnÞs40 for all s 2 Rn; sa0,
then x� is an isolated local minimizer of f. &

But when can we be assured that a local minimizer of f is
actually a solution to the unconstrained optimization
problem (2)? The perhaps easiest sufficient condition is
that the function f is convex, that is, s>HðxÞs � 0 for all
x 2 Rn if f is twice differentiable. Then any local min-
imizer x� is a solution to problem (2), in fact, any
stationary point x� is a solution to (2).

The optimality conditions provide the foundation for
all practical unconstrained optimization methods. The
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focus of all these algorithms is to find (actually, to
approximate) a stationary point of f, that is, a solution to
rf(x) = 0. They do so by generating a sequence of iterates
{x(k)} that ideally terminates once a stopping rule is sat-
isfied indicating that an approximate solution has been
found. The key step for these methods is to generate
a new iterate x(k+1) from a current iterate x(k). A vast
majority of optimization routines uses one of two basic
strategies for moving from x(k) to x(k+1), a line search
approach or a trust region method.

3.1 Line search methods
The general set-up of a line search method is as follows.
From a point x(k) (with rf(x(k)) 6¼ 0) we look for a search
direction s(k) that leads us to lower function values for f.
Using the linear approximation l with lðsÞ ¼ f ðxðkÞÞ þ
rf ðxðkÞÞ>s we determine a descent direction s(k) satisfying

rf ðxðkÞÞ>sðkÞo0,

which in turn implies l(s(k))of(x(k)). Because of Taylor’s
theorem we hope that along a step in the direction s(k) the
function value f(x) will be reduced. We calculate a suitable
step length ak40 to ensure that f(x(k+1))of(x(k)) where

xðkþ1Þ ¼ xðkÞ þ aksðkÞ.

Observe that at a given point x(k) and for a descent
direction s(k) finding the optimal value of ak requires us to
solve a one-dimensional optimization problem. In prin-
ciple we could apply Newton’s method to this problem. In
practice, however, this one-dimensional problem does not
need to be solved exactly because repeatedly finding the
optimal step length is both unnecessary for convergence
of line search methods and computationally rather ineffi-
cient. Instead modern line search methods prefer to use
inexact line searches that just pick a step length that leads
to a sufficient decrease in the objective function value.
One such approach is the backtracking Armijo line
search, which requires that

f ðxðkÞ þ aksðkÞÞ � f ðxðkÞÞ þ akbrf ðxðkÞÞ>sðkÞ

for some b A (0,1). The idea of this requirement is to link
the step size ak to the decrease in f. The longer the step the
larger the decrease must be. Starting with an initial guess
for ak, say 1, we can now stepwise reduce the value of ak
until the above condition is satisfied. At that point we set
x(k+1)=x(k)+aks

(k).
While the basic line search method seems very intu-

itive, it can fail if the search direction and the gradient
tend to a point where they are orthogonal to each other,
that is, the product rf ðxðkÞÞ>sðkÞ tends to zero with-
out the gradient itself approaching zero. This kind of
failure can be avoided by a proper choice of search
direction.

3.1.1 Method of steepest descent
The perhaps most intuitive choice for a descent direction
is

sðkÞ ¼ �rf ðxðkÞÞ,

because this search direction gives the greatest possible
decrease in the linear approximation l (for a fixed step
length). It is thus called the steepest descent direction.
And indeed, a line search with the steepest descent
direction has very nice theoretical properties.

Theorem Suppose that f is continuously differentiable
and that rf is Lipschitz continuous on Rn. Then for the
sequence {x(k)} of iterates generated by a line search
method using the steepest descent direction and the
backtracking Armijo line search one of the following
three conditions must hold.

(C1) rf(x(k))=0 for some k Z 0.
(C2) limk-Nrf(x(k)) = 0.
(C3) limk-Nf(x(k)) =�N. &

The method of steepest descent has the global con-
vergence property, that is, independent of the starting
point the sequence of gradients will converge to a sta-
tionary point (but that does not mean that the sequence
x(k) converges, think of �ln(x(k))!) or the function values
diverge and indicate that no minimum exists.

Example 3 A consumer has a utility function
uðx1; x2; x3Þ ¼

ffiffiffiffiffi
x1

p þ 2
ffiffiffiffiffi
x2

p þ 3
ffiffiffiffiffi
x3

p
over three goods.

She can spend $1 on buying quantities of these three
goods, all of which have a price of $1. After substituting
the budget equation, x1 + x2 + x3 = 1, into the utility
function the consumer wants to maximize

ffiffiffiffiffi
x1

p þ 2
ffiffiffiffiffi
x2

p þ
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x1 � x2

p
. (We can trivially solve this problem with

pencil and paper and find the optimal solution
ð 1

14;
4

14;
9

14Þ.) We solve the consumer’s optimization prob-
lem by minimizing the function f ðx1; x2Þ ¼ �ð ffiffiffiffiffi

x1
p þ

2
ffiffiffiffiffi
x2

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x1 � x2

p
Þ with a steepest descent method

(using the optimal step length in each step). Figure 1
indicates some of the early steps and Table 1 lists details
of some of the steps. (To show convergence of variable
values and the optimal function value we report six digits
for these terms. The search direction and norm of the
gradient are converging to zero and so for simplicity we
report fewer and not always the same number of digits.
We abbreviate numbers like 6.7 � 10�8 by 6.7(�8).)

The steepest descent method makes good progress in
the first few iterations but then slows down considerably.
Note the comparatively little change in the values of
x(k) during the last 10 to 15 iterations. The figure shows a
lot of ‘zigzagging’ from iterate to iterate. &

The behaviour of the steepest descent method in the
example is quite typical. As a result the convergence of
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the method is rather slow. And so, despite having the
global convergence property, it is useless in practice. The
slow convergence (see Nocedal and Wright, 2006, ch. 3)
of this method renders it impractical. The convergence
problems are essentially due to the reliance on a first-
order approximation, which ignores the curvature
properties of f. Newton’s method takes advantage of a
second-order approximation.

3.1.2 Newton methods
The quadratic approximation q of the objective function f
at an iterate x(k) is given by

qðsÞ ¼ f ðxðkÞÞ þ rf ðxðkÞÞ>sþ 1

2
s>HðxðkÞÞs.

The first-order condition q0(s)=0 yields the search direc-
tion

sðkÞ ¼ �HðxðkÞÞ�1rf ðxðkÞÞ.

Only under very strong conditions is Newton’s method
globally convergent.

Theorem Suppose that f is continuously differentiable
and that rf is Lipschitz continuous on Rn. If for the
sequence {x(k)} of iterates generated by a line search
method using the Newton direction and the backtracking
Armijo line search the Hessian matrices H(x(k)) are pos-
itive definite with eigenvalues that are uniformly
bounded away from zero, then one of the conditions
(C1), (C2), (C3) must hold. &

Example 4 We revisit the consumer’s optimization
problem from Example 3 and minimize the function
f ðx1; x2Þ ¼ �ð ffiffiffiffiffi

x1
p þ 2

ffiffiffiffiffi
x2

p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x1 � x2

p
Þ with a

Newton method (using the optimal step length in each
step). Table 2 lists all the steps of this method and Figure 2
displays some of the early steps.Newton’s method con-
verges very rapidly. Unlike the steepest descent method it
does not slow down near the solution, instead we see a

0.04 0.05 0.06 0.07 0.08 0.09 0.1
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y

Figure 1 First steps of a steepest descent method

Table 1 Steps of a steepest descent method

k x
ðkÞ
1 x

ðkÞ
2

s(k) rf ðxðkÞÞ
�� �� f ðxðkÞÞ

0 0.1 0.5 �0.7906 �0.9575 1.2417 �3.62781

1 0.0358229 0.422272 0.6041 �0.4988 0.7834 �3.69734

2 0.0867861 0.380194 �0.3573 �0.4328 0.5612 �3.71804

3 0.0528943 0.339146 0.2503 �0.2066 0.3245 �3.73387

4 0.0772951 0.318999 �0.1321 �0.1600 0.2075 �3.73858

5 0.0643195 0.303284 0.0853 �0.0704 0.1106 �3.74074

6 0.0732734 0.295891 �0.0414 �0.0502 0.0651 �3.74136

7 0.0691862 0.290940 0.0257 �0.0212 0.0334 �3.74157

..

. ..
.

10 0.0715805 0.286543 �0.0034 �0.0041 0.0054 �3.74166

..

. ..
.

15 0.0714140 0.285747 1.64 (�4) �1.35 (�4) 2.12 (�4) �3.74166

..

. ..
.

20 0.0714288 0.285716 �5.94 (�6) �7.19 (�6) 9.33 (�6) �3.74166
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quadratic rate of convergence just like in the one-
dimensional problem in Example 1. &

The condition that the Hessian matrix H(x(k)) is pos-
itive definite for the entire sequence {x(k)} is rarely satisfied
for general problems. But if the Hessian is not positive
definite then the search direction s(k) may be an ascent
instead of a descent direction. The modified Newton
methods address this problem by modifying the Hessian
matrix H(x(k)). These methods choose a search direction

sðkÞ ¼ �ðHðxðkÞÞ þMðxðkÞÞÞ�1rf ðxðkÞÞ,

where the matrix M(x(k)) is chosen so that H(x(k)) +
M(x(k)) is ‘sufficiently’ positive definite. If H(x(k)) is suffi-
ciently positive definite itself then, of course, M(x(k)) = 0.
A proper choice of M(x(k)) is crucial for the effectiveness
of this approach; see Gould and Leyffer (2002) and
Nocedal and Wright (2006) for many more details.

The most tedious task in Newton’s method is the com-
putation of the Hessian matrix H(x(k)). Therefore,
for decades it was fashionable to develop methods, the

so-called quasi-Newton methods, that rely on approxi-
mations of the exact Hessian matrix. Interest in these
methods has somewhat diminished due to the develop-
ment of automatic differentiation techniques. These tech-
niques allow a very fast and reliable computation of
derivatives and so make the task of calculating the Hessian
feasible even for large problems. Nocedal and Wright
(2006, ch. 6) discuss quasi-Newton methods in detail.

Before we continue our discussion of optimization
algorithms we pause for a quick comment on some
potential name confusion. In addition to Newton meth-
ods for unconstrained optimization there is also a
Newton method for solving nonlinear systems of equa-
tions. To avoid confusion and for historical reasons the
root-finding methods for nonlinear systems of equations
are sometimes called Newton–Raphson methods; see
Judd (1998) and references therein. In particular, Newton
methods for solving unconstrained optimization prob-
lems should not be confused with so-called global
Newton methods. In economic theory the term ‘Smale’s
global Newton method’ appears to be well known. This
term refers to a solution method for solving nonlinear
systems of equations (see Smale, 1976) which is closely
related to homotopy continuation methods. Clearly, we
could use methods for nonlinear equations to solve the
first-order conditions rf(x) = 0. This approach, however,
does not use other information from the underlying
optimization problem and thus is often inefficient. Here
we do not discuss methods for solving nonlinear equa-
tions, and refer to Allgower and Georg (1979), Judd
(1998) and Miranda and Fackler (2002).

3.2 Trust region methods
Line search methods use an approximation of the objec-
tive function f to generate a search direction. Subse-
quently they determine a suitable step length along this
direction. Trust region methods also rely on an approx-
imation of f, but they first define a region around the
current iterate in which they trust the approximation
to be adequate. Then they simultaneously choose the
direction and step length.

For the purpose of our discussion here we consider a
quadratic approximation of f around x(k),

qkðsÞ ¼ f ðxðkÞÞ þ rf ðxðkÞÞ>sþ 1

2
s>BðxðkÞÞs,

Table 2 Steps of a Newton method

k x
ðkÞ
1 x

ðkÞ
2

s(k) rf ðxðkÞÞ
�� �� f ðxðkÞÞ

0 0.1 0.5 �0.0161 �0.2078 1.2417 �3.62781

1 0.0829896 0.280 �0.0128 0.0062 0.1440 �3.74077

2 0.0714128 0.285450 1.58 (�5) 2.64 (�4) 0.0014 �3.74166

3 0.0714286 0.285714 �2.27 (�8) 1.10 (�8) 3.15 (�7) �3.74166

4 0.0714286 0.285714 5.46 (�15) �3.74166
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Figure 2 First steps of a Newton method
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where B(x(k)) is a symmetric approximation of the Hes-
sian matrix H(x(k)). Trust region methods do not require
the Hessian matrix of the function qk to be positive defi-
nite. Therefore, we could use B(x(k)) =H(x(k)). In that
case, the algorithm is called a trust region Newton
method. Given a trust region radius Dk40 in each iter-
ation, the algorithm seeks an (approximate) solution to
the trust region sub-problem

min
s2Rn

qkðsÞ subject to ksk � Dk.

Before we discuss how we may solve this sub-problem we
need to decide on a proper choice for the trust region
radius. Note that qk(0)�qk(s

(k)) is the predicted reduc-
tion for a step s(k). Similarly, f(x(k))�f(x(k)+s(k)) is the
actual decrease in the objective. The ratio

rk ¼
f ðxðkÞÞ � f ðxðkÞ þ sðkÞÞ

qkð0Þ � qkðsðkÞÞ

gives an indication on how well the quadratic approx-
imation predicts the reduction in the function value.
Ideally we would like the step s(k) to yield a value of rk of
close to or larger than 1. In that case we accept the
step and may possibly increase the radius for the
next iteration. If, however, rk is close to zero or even
negative, then we would decrease the trust region radius,
set x(k+1) = x(k), and attempt to solve the sub-problem
again.

Recall that line search methods do not require the step
length to be chosen optimally in order to be globally
convergent. Similarly, it is unnecessary and in fact com-
putationally inefficient to solve the trust region sub-
problem exactly. Instead, it suffices to search for a step
giving a sufficient reduction in qk. Such a sufficient
reduction is achieved by requiring a decrease that is at
least as large at that obtained by a step in the direction of
steepest descent. The solution to

min
a2R

qkð�arf ðxðkÞÞÞ subject to

k � arf ðxðkÞÞk � Dk

yields the Cauchy point

sCk ¼ �tkDk
rf ðxðkÞÞ
krf ðxðkÞÞk

where the constant tk A (0,1] depends on the curvature
of qk and the radius Dk; see Nocedal and Wright (2006)
for a closed-form solution. The approximate solution s(k)

of the trust region subproblem must now satisfy
qkðsðkÞÞ � qkðsCk Þ.

Theorem Let qk be the second-order approximation of
the objective function f at x(k) and let sCk be its Cauchy

point in the trust region defined by sk k � Dk. Then

qkð0Þ � qkðsCk Þ ¼ f ðxðkÞÞ � qkðsCk Þ

� 1

2
krf ðxðkÞÞkmin

krf ðxðkÞÞk
1 þ kBðxðkÞÞk ;Dk

� �
.

&
The theorem has the typical flavour of results on trust

region methods. It relates the reduction in the quadratic
approximation, qkð0Þ � qkðsCk Þ, to ||rf(x(k))||, which is a
measure for the distance to optimality. Once again a
global convergence result holds.

Theorem Consider the sequence {x(k)} of iterates gener-
ated by the described trust region method. Suppose that f
is twice continuously differentiable and both the Hessian
of f and the quadratic approximation qk are bounded for
all k. Then one of the conditions (C1), (C2), (C3) must
hold. &

The trust region method based on the Cauchy point is
effectively a steepest descent (line search) method where
the choice of the step length is bounded by the trust
region radius. Therefore, this method also suffers from
very poor convergence in practice. Better algorithms start
from the Cauchy point and try to improve upon it. There
is a variety of such methods that take advantage of addi-
tional properties of f; see Gould and Leyffer (2002) and
Nocedal and Wright (2006). For a comprehensive treat-
ment of trust region methods, see Conn, Gould and Toint
(2000).

4 Constrained optimization
Now we consider the constrained optimization problem

min
x2Rn

f ðxÞ

s:t: giðxÞ � 0 i 2 I ðNLPÞ
hjðxÞ ¼ 0 j 2 E:

We define the feasible region F of this optimization
problem to be the set of all points that satisfy the con-
straints, so

F ¼ fx 2 Rn j giðxÞ � 0; i 2 I;

hjðxÞ ¼ 0; j 2 Eg.

Just as for the unconstrained optimization problem, we
can define global and local solutions. Of course, a desired
optimal solution x� to this optimization problem satisfies
f ðxnÞ � f ðxÞ for all x 2 F. A point x� is a local min-
imizer if it satisfies f ðxnÞ � f ðxÞ for all x 2 NðxnÞ \F
for some neighbourhood NðxnÞ of x�. The vector x� is an
isolated local minimizer if there exists a neighbourhood
NðxnÞ in which it is the only local minimizer.
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The conditions of these definitions, just like their
counterparts for unconstrained optimization problems,
are pretty much useless for the computation of optimal
solutions – with one major exception. The simplex
method for solving linear programming problems relies
on the comparison of objective function values at some
special points in the feasible region. Most other practical
numerical methods, however, rely again on optimality
conditions. Penalty methods transform the problem
(NLP) into (a sequence of) unconstrained optimization
problems and then rely on their respective first-order
conditions. Many methods rely directly on optimality
conditions for constrained optimization. These optima-
lity conditions require that certain degenerate behaviour
does not occur at potential minimizers. Conditions that
rule out such degenerate points are called ‘constraint
qualifications’. These conditions are important but do
not always get the proper attention in economics, but see
Simon and Blume (1994) for a rigorous treatment.
Numerous such constraint qualifications exist; here we
just mention one such condition.

The set of constraints that hold with equality at a
feasible point x 2 F is called the active set AðxÞ. For-
mally,

AðxÞ ¼ fi 2 IjgiðxÞ ¼ 0g [ E.

The linear independence constraint qualification (LICQ)
holds at a point x 2 F if the gradients of all active con-
straints are linearly independent. Now we can state the
well-known first-order necessary conditions, which most
of us learnt as Kuhn–Tucker or Karush-Kuhn-Tucker
(KKT) conditions.

Theorem Suppose the functions f, gi, iAI, and hj, jAE,
are continuously differentiable. Further suppose x� is a
local solution of the problem (NLP) that satisfies the
(LICQ). Then there exist unique Lagrange multipliers nni ,
i A I, and lnj , j A E, such that the following conditions
are satisfied.

rf ðxnÞ �
X
i2I

nni rgiðxnÞ �
X
j2E

lnj rhjðxnÞ ¼ 0,

(3)

giðxnÞ � 0; for all i 2 I, (4)

hjðxnÞ ¼ 0; for all j 2 E, (5)

nni giðxnÞ ¼ 0; for all i 2 I, (6)

nni � 0; for all i 2 I. (7)

Again we may ask when we can be assured that a
solution to the KKT conditions is actually a solution to
the nonlinear optimization problem (NLP). If the feasible
region F is a convex set (see Simon and Blume, 1994),

and the objective function f is convex on F, then the
problem (NLP) is called a convex programming problem,
and any local solution is also a (global) solution of
(NLP). For example, if the functions hj, j A E, are all
linear and the functions � gi, i A I, are all convex, then
F is a convex set. In this case, if f is convex, too, indeed
any solution to the KKT conditions is a solution to
(NLP).

Many of the most popular numerical methods for
solving nonlinear constrained optimization problems
take advantage of the KKT conditions in one form or
another. First, however, we describe the basic version of
the simplex method for linear programming which does
not rely on first-order conditions.

4.1 The simplex method
When the objective function f and the constraint func-
tions gi, iAI, and hj, jAE, are all linear functions in the
variables x 2 Rn, then the constrained optimization
problem is a linear programming problem, or ‘linear
program’ for short. Linear programs have a standard
form,

min
x2Rn

c>x

s:t: Ax ¼ b ðLPÞ
x � 0

where c 2 Rn, b 2 Rm, and A is an m� n matrix. We can
easily transform any linear programming problem with
arbitrary linear inequalities and unbounded variables
into this standard form.

The development of the simplex method in the late
1940s (Dantzig, 1949) for solving linear programs is
generally regarded as the beginning of the modern era of
optimization (Nocedal and Wright, 2006). The simplex
method is, however, not only of historical importance
but to this day the perhaps most widely used tool in
optimization outside economics. Here we describe the
fundamental idea of the basic version of the simplex
method.

The system of equality constraints, Ax= b, has m equa-
tions in the n decision variables. For the LP to be an
interesting optimization problem it must be the case that
mon. If m4n then either the linear system is overdeter-
mined and so the feasible region is empty and the LP has
no solution, or the system can be simplified so that the
number of equations does not exceed the number of var-
iables. The same conclusions apply for the case m= n if the
matrix A is singular. If m= n and A has full rank, then the
feasible region consists of at most one point and the LP is
trivial. We can therefore assume that the system of equality
constraints is underdetermined, that is, it has fewer equa-
tions than variables. Modern computer implementations
of the simplex method start with a pre-processing phase,
which transforms a given linear programming problem by
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removing redundancies and possibly even also eliminating
some variables.

We can easily calculate some of the solutions to the
system Ax=b. If we choose m of the n variables and set
the remaining n � m variables to zero, then the system
reduces to a square system of m linear equations, which
can be solved via Gaussian elimination. The chosen var-
iables for which we solve the system are called ‘basic
variables’, while those variables that we set to zero are
called ‘non-basic variables’. Solving the m linear equa-
tions in the m basic variables can lead to three possible
outcomes. First, we may detect that the system has no
solution. Second, a solution, called basic solution, may
exist and it also satisfies the remaining constraints of
the LP, namely the sign restrictions x � 0. In this case

the solution is called a ‘basic feasible solution’. Third, the
solution to the linear system may entail a negative value
for at least one variable and thus violate the sign restric-
tion. Such a solution is called ‘basic infeasible’. Two basic
solutions are called adjacent if their respective sets of
basic variables have all but one element in common. The
next theorem explains why the basic feasible solutions are
of central importance to the linear program.

Theorem If the problem (LP) has a non-empty feasible
region, then there is at least one basic feasible solution. If
the problem (LP) has an optimal solution then it has the
following properties.

1. At least one optimal solution is a basic feasible
solution.

2. If (LP) has a unique solution, then this optimal solu-
tion is basic feasible.

3. If a basic feasible solution x� has an objective function
value that is not larger than the objective function
values at all its adjacent basic feasible solutions, then
x� is a solution of (LP).

4. If the feasible region is bounded and a basic feasible
solution x� has an objective function value that is
strictly less than the objective function value at all its
adjacent basic feasible solutions, then x� is the unique
solution of (LP). &

This theorem provides the foundation for the basic
approach of the simplex method. According to the first
statement of the theorem, if an optimal solution exists
then there must be a basic feasible solution that is opti-
mal. Thus, for solving the problem (LP) it suffices to only
examine basic feasible solutions. In principle we could
now find a solution to the problem (LP) by simply cal-
culating all its basic solutions and then choosing a basic
feasible solution with the smallest objective function
value. We would not want to do this in practice, however,
since the number of possible basic solutions is n

m

� �
and

thus is huge for many applications. The simplex method
prescribes a smart way of searching through the basic
feasible solutions. Starting from some basic feasible

solution, the simplex searches for another basic feasible
solution with a lower objective function value. From a
computational standpoint it is much quicker to examine
only adjacent basic feasible solutions. The information
we have from having solved a linear system in, for exam-
ple, the variables x1, x2, x3, greatly simplifies finding a
solution in the variables x2, x3, x5. Therefore, the simplex
considers only adjacent feasible solutions and chooses
one of them by exchanging one basic variable against one
non-basic variable and solving the resulting system of
linear equations. On most (but not all) steps of the
method the objective function value decreases. This
process repeats itself until the method reaches a basic
feasible solution without any adjacent basic feasible solu-
tions having a lower objective function value. The third
statement of the theorem (which is a special version of
the convex programming property for linear programs)
then ensures that the simplex method has found an
optimal solution.

We illustrate the basic ideas underlying the simplex
method in the following example.

Example 5 Consider the following linear programming
problem.

max
x1;x2

3x1 þ 4x2

s:t: x1 þ 2x2 � 10

x1 þ x2 � 8

x2 � 4

x1 � 0

x2 � 0

Linear programming problems with two variables allow a
beautiful graphical representation, which greatly helps us
to gain some intuition for the simplex method. Figure 3
shows the feasible region of this linear programming
problem.This problem has three inequality constraints
and two sign restrictions. The introduction of three so-
called slack variables transforms the inequalities into
equations. This introduction of new variables is just one
of several simple transformations that allow us to rewrite
any linear programming problem into a linear program
in standard form; see Dantzig (1963) or many other lin-
ear programming books. Here we obtain the following
linear program.

min
x1 ;x2;x3;x4 ;x5

�3x1 � 4x2

s:t: x1 þ 2x2 þ x3 ¼ 10

x1 þ x2 þ x4 ¼ 8

x2 þ x5 ¼ 4

x1; x2; x3; x4; x5 � 0

This linear program has n ¼ 5 variables and m ¼ 3 con-
straints. Table 3 lists all 5

3

� �
¼ 10 possible combinations
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of basic variables, the corresponding basic solution (if it
exists), whether this solution is feasible, and the objective
function values z ¼ �3x1 � 4x2 for the basic feasible
solutions. For example, the basic solution (4, 4, �2, 0, 0)
is obtained by setting x4 = x5 = 0 and then solving the
remaining three equations

x1 þ 2x2 þ x3 ¼ 10; x1 þ x2 ¼ 8; x2 ¼ 4,

in the three basic variables x1, x2, x3. This basic solution is
infeasible since x3 =�2 violates the non-negativity con-
straint on this variable. The basic variables x1, x3, x4 lead
to the three equations

x1 þ x3 ¼ 10; x1 þ x4 ¼ 8; 0 ¼ 4,

which obviously have no solution. We can relate the nine
basic solutions to points in the graph of the feasible

region in Figure 3. The five feasible solutions are repre-
sented by disks while the four infeasible solutions are
given by circles. We can easily identify the coordinates of
the nine indicated points with the values of the original
variables x1 and x2 in the nine basic solutions. But where
are the later introduced slack variables? The values of
these variables at a basic solution show us where the cor-
responding point in the figure is in relation to the three
constraints. The basic solution (4,4,�2,0,0) is represented
by the point (4,4) in the graph. This point lies on the lines
representing the second and third constraints, since
x4 = x5 = 0, and outside the first constraint, since x3o0.
The simplex method quickly solves this problem. Starting
from the basic feasible solution that corresponds to the
origin in Figure 3 it moves through the basic feasible
solutions (‘BFS’) listed in Table 4 to find the optimal
basic feasible solution (6,2,0,0,2). Figure 4 illustrates the
steps of the simplex method. Starting from the point
(0,0) it moves upwards to the point (0,4) with an objec-
tive function value of z=� 16, then to (2,4) with z=�
22 and finally to (6,2) with z=� 26. The basic feasible
solution corresponding to this last point has a strictly
lower objective function value than both its adjacent
basic feasible solutions at (2,4) and (8,0) and hence it
must be the unique optimal solution.

In Figure 4 only the visited points are indicated by disks
and the iso-objective function lines for the values � z of
the original objective function (from the maximization
problem) at these points. &

We have conveyed only the basic principle of the sim-
plex method for solving linear programming problems.
Of course, an efficient and robust implementation of the
simplex algorithm must address many technical details;
see Fletcher (1987) or once again Nocedal and Wright
(2006). The classical reference for the theory of the sim-
plex method is the book by Dantzig (1963).

The simplex method is highly efficient on virtually all
practical problems, but there do exist pathological prob-
lems on which it shows very poor performance. In these
worst-case problems the running time of the simplex
method grows exponentially in the dimension of the
problems. (In a nutshell, the method visits far too many
basic feasible solutions until it finds the optimal one.)
Therefore, the simplex method is of exponential complex-
ity. Although these examples are irrelevant for practical
applications, they generated interest in the development of
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Figure 3 Feasible region of the (LP)

Table 3 All basic solutions

Basic variables Basic solution Property z

x1, x2, x3 (4, 4, �2, 0, 0) Infeasible –

x1, x2, x4 (2, 4, 0, 2, 0) Feasible �22

x1, x2, x5 (6, 2, 0, 0, 2) Feasible �26

x1, x3, x4 – No Solution –

x1, x3, x5 (8, 0, 2, 0, 4) Feasible �24

x1, x4, x5 (10, 0, 0, �2, 4) Infeasible –

x2, x3, x4 (0, 4, 2, 4, 0) Feasible �16

x2, x3, x5 (0, 8, �6, 0, �4) Infeasible –

x2, x4, x5 (0, 5, 0, 3, �1) Infeasible –

x3, x4, x5 (0, 0, 10, 8, 4) Feasible 0

Table 4 Iterates of the simplex method

Basic Variables BFS z

x3, x4, x5 (0, 0, 10, 8, 4) 0

x2, x3, x4 (0, 4, 2, 4, 0) �16

x1, x2, x4 (2, 4, 0, 2, 0) �22

x1, x2, x5 (6, 2, 0, 0, 2) �26

4656 numerical optimization methods in economics



different algorithms that would show better worst-case
running times, in particular, that would have running
times that grow only polynomially in the size of the prob-
lems. The first linear programming algorithm with poly-
nomial complexity was the ellipsoid method of Khachiyan
(1979). Although this method has polynomial complexity
it is useless for actual computations, and apparently there
has never been a serious practical implementation. The
projective algorithm of Karmarkar (1984) started what is
nowadays called the ‘interior-point revolution’. This algo-
rithm both has polynomial complexity and is of practical
use, although the initial claims about its supposedly stellar
practical performance were shown to be outrageous. The
projective algorithm has long been superseded by more
efficient methods, and the field of interior-point methods
remains an active area of research to this day.

4.2 The idea of interior-point methods
Primal-dual methods are an important subclass of inte-
rior-point methods for solving constrained optimization
problems. Here we give a basic outline of such a method
for solving linear programs. The Karush–Kuhn–Tucker
conditions for a linear programming problem in standard
form are as follows.

A>lþ s ¼ c (8)

Ax ¼ b (9)

xisi ¼ 0; i ¼ 1; 2; . . . ; n (10)

x � 0 (11)

s � 0 (12)

These first-order conditions characterize both the optimal
solution of the given linear program and of its dual. (See
Dantzig, 1963, or any book on linear programming for
the definition of the dual of a linear program.) That fact
motivates the name ‘primal-dual’ method.

Interior-point methods (approximately) solve a
sequence of perturbed problems. Consider the following
perturbation of the first-order conditions.

A>lþ s ¼ c (13)

Ax ¼ b (14)

xisi ¼ m; i ¼ 1; 2; . . . ; n (15)

x40 (16)

s40 (17)

Observe that the complementarity condition (10) has
been replaced by the equations (15) for some positive
scalar m40. Assuming that a solution (x(0),l(0),s(0)) to
this system is given for some initial value of m(0)40,
interior-point methods decrease the parameter m and
thereby generate a sequence of points (x(k), l(k), s(k)) that
satisfy the non-negativity constraints on the variables
strictly, x(k)40 and s(k)40. This property led to the
name ‘interior-point’ method. In the limit, as m is
decreased to zero, a point satisfying the original first-
order conditions is reached. The set of solutions to the
perturbed system,

C ¼ fxðmÞ; lðmÞ; sðmÞjm40g

is called the central path.
The method is rather intuitive at this point. Given an

iterate (x(k), l(k), s(k)) for some parameter value m(k)

decrease the parameter to m(k+1)om(k) and determine
the next iterate (x(k+1), l(k+1), s(k+1)). Implementing this
method requires handling of many details. For example,
it is often difficult to find a feasible starting point
(x(0), l(0), s(0)) of the perturbed system. The most impor-
tant step in the method is to solve the system (13)–(15)
in each iteration (while maintaining the inequalities (16,
17)). Observe that this system consists of 2n+m linear
and bilinear equations in as many variables. We can apply
a nonlinear equations solver to this model. A popular
approach is to use Newton’s method for solving nonlin-
ear systems of equations; see Judd (1998) or Miranda and
Fackler (2002). The difficulty is to maintain the strict
non-negativity constraints on the variables x(k+1) and
s(k+1). An alternative approach for solving the parame-
terized system of equations is the application of path-
following methods; see Nocedal and Wright (2006).
Intuitively we can think of interior-point methods to be
closely related to homotopy continuation methods for
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solving nonlinear systems of equations; see Allgower and
Georg (1979).

Example 6 We revisit the linear program from Example
5. The perturbed first-order conditions (13)–(17) for this
(LP) are as follows.

l1 þ l2 þ s1 þ 3 ¼ 0

2l1 þ l2 þ l3 þ s2 þ 4 ¼ 0

l1 þ s3 ¼ 0

l2 þ s4 ¼ 0

l3 þ s5 ¼ 0

x1 þ 2x2 þ x3 � 10 ¼ 0

x1 þ x2 þ x4 � 8 ¼ 0

x2 þ x5 � 4 ¼ 0

xi � si ¼ m; i ¼ 1; 2; . . . ; n

x1; x2; . . . ; x540

s1; s2; . . . ; s540

Table 5 displays the values for the variables x1,x2,y, x5 at
some points on the central path for small values of m. We
observe how the central path moves through the interior
of the feasible region, see Figure 3, and converges to the
optimal solution as m-0. &

By now the conceptual differences between the simplex
method and interior-point methods are transparent. In
geometric terms, the simplex method moves on specific
points around the boundary of the feasible region until it
finds a corner point corresponding to an optimal basic
feasible solution. Interior-point methods move through
the interior (or some methods even through the exterior)
of the feasible region but they do not move within the
boundary. Instead they approach the boundary only in
the limit. In computational terms, the typical iteration of
an interior-point method is relatively expensive to
compute but can make significant progress towards the
solution. Conversely, an iteration of the simplex method
is relatively inexpensive but the method often requires a
larger number of iterations.

Obviously the question arises of which of these two
basic approaches is better for solving linear programs in
practice. The answer depends very much on the nature of

the problem. Currently the best available computer
programs are efficient implementations of the dual
simplex method (a special variant of the described
standard simplex method) and primal–dual interior-
point methods. Simplex method computer programs are
usually faster on problems of small or medium size (say,
of fewer than a million variables and constraints) while
interior-point methods tend to do better on many but
certainly not all large problems. If the user has significant
prior information about the optimal solution, such as a
good initial guess for an optimal basic feasible solution,
then the simplex method is often much faster. The reason
for this is that the simplex method is much easier to
‘warm-start’ than interior-point methods. In summary,
interior-point methods and the simplex method are both
important and useful algorithms for solving linear
programs in practice.

Before we turn to interior-point methods for non-
linear optimization problems, we outline the basic
concepts of another class of optimization algorithms.
Penalty methods are quite intuitive and some of their
ideas are relevant for interior-point methods but they are
also of interest on their own.

4.3 Penalty methods
The basic idea of penalty methods is to replace the
constrained optimization problem (NLP) by an uncon-
strained optimization problem and to solve the new
problem instead. The objective function for the new
unconstrained problem is the original objective plus a
new term for each constraint. The new term is zero when
the original constraint is satisfied but is positive if the
original constraint is violated. The simplest and perhaps
most intuitive penalty function is the quadratic penalty
function.

To start we consider a nonlinear optimization problem
with only equality but no inequality constraints,

min
x2Rn

f ðxÞ

s:t: hjðxÞ ¼ 0 j 2 E:

For such a problem we can define a penalty function

Qðx; mÞ ¼ f ðxÞ þ m
X
j2E

h2
j ðxÞ

 !

with a penalty parameter m40. The idea of the penalty
function method is to minimize the function Q for
increasing values of m. Observe that the function Q
inherits its differentiable properties from the functions f
and hj, jAE, of the original problem, and so we can use
unconstrained optimization methods for minimizing
Q(x; m). In addition, as we generate a sequence m(k),
k= 0, 1, 2,y, we can use the previously calculated min-
imizer x(k)(m(k)) as initial guesses for the problem with
m(k+1). This intuitive approach has a strong theoretical

Table 5 Solutions x�(m) for small m

m x1(m) x2(m) x3(m) x4(m) x5(m)

1 5.9775 1.5451 0.9323 0.4774 2.4549

0.5 6.0305 1.7311 0.5073 0.2384 2.2689

0.1 6.0029 1.9478 0.1014 0.0492 2.0522

0.01 6.0000 1.9950 0.0100 0.0050 2.0050

0 6 2 0 0 2
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foundation, as the following theorem reveals; see Nocedal
and Wright (2006).

Theorem Consider a sequence {m(k)} of penalty param-

eters with m(k)-N. Suppose that x(k) is the exact global

minimizer of Qðx; mðkÞÞ ¼ f ðxÞ þ mðkÞð
P

j2Eh
2
j ðxÞÞ. Then

every limit point x� of the sequence {x(k)} is a global
solution of the (NLP). &

Although this result is nice from a theoretical view-
point, it does not directly apply to practical applications.
Of course, we typically cannot determine the exact min-
imizer of the penalty function and have to account for
errors in the numerical approximation. The discussion in
Nocedal and Wright (2006) shows that things get more
complicated in practice once we allow for approximation
errors. In addition, the penalty function may have many
other stationary points that are not global or even local
minimizers. The penalty function may even be unbounded
if the penalty parameter m is too small. At the other
extreme, for very large values of m the unconstrained
minimization problem becomes more difficult, and the
Hessian of Q gets ill-conditioned. All kinds of numerical
problems arise that need to be carefully addressed
in robust computer implementations of the quadratic
penalty method; see Nocedal and Wright (2006).

For the general problem (NLP) with inequality and
equality constraints we can define the penalty function as

Qðx; mÞ ¼ f ðxÞ

þ m
X
i2I

maxð�giðxÞ; 0Þ
� �2 þ

X
j2E

h2
j ðxÞ

 !
.

Now, however, things get more complicated since Q will
typically not be twice differentiable. As a result the new
unconstrained problem becomes more difficult to solve.

In addition to the quadratic penalty method several
other such approaches exist and are used in practice.
Nocedal and Wright (2006) describe non-differentiable
penalty functions and the augmented Lagrangian meth-
od. Here we finish our discussion with an illustration of
the quadratic approach.

Example 7 Consider a simple example of the classical
portfolio optimization problem (Markowitz, 1952). An
investor wants to allocate her entire wealth across three
securities with respective expected returns of 4 per cent, 8
per cent and 12 per cent. If she invests the respective por-
tions x1, x2, x3 in the three assets, then the variance of such
a portfolio is x2

1 þ 5x2
2 þ 3x2x3 þ 10x2

3. The investors
wants to minimize this variance under the condition that
the expected return of her portfolio is at least 9 per cent.
To simplify this illustration of the quadratic penalty
method we exploit the fact that at the optimal solution the
lower bound on the expected return is binding and thus

write the investor’s portfolio allocation problem as a non-
linear optimization problem with only equality constraints.

min
x1;x2;x3

x2
1 þ 5x2

2 þ 3x2x3 þ 10x2
3

s:t: x1 þ x2 þ x3 � 1 ¼ 0

4x1 þ 8x2 þ 12x3 � 9 ¼ 0

The quadratic penalty function for the investor’s portfolio
optimization problem is

Qðx; mÞ ¼ x2
1 þ 5x2

2 þ 3x2x3 þ 10x2
3

þ mððx1 þ x2 þ x3 � 1Þ2

þ ð4x1 þ 8x2 þ 12x3 � 9Þ2Þ.

We can easily solve the unconstrained problem with the
basic Newton method as described in Section 3.1.2. Table 6
shows the solution to the unconstrained minimization of
the penalty function for increasing values of m. &

Observe that the nonlinear optimization problem in
this example has a quadratic objective function and linear
constraints. Such optimization problems constitute a spe-
cial and important subclass of problems called quadratic
programs. Their special properties give rise to efficient
solution methods, and we would not want to solve large
quadratic programs with a penalty method. Nocedal and
Wright (2006) present several algorithms for quadratic
programming. Since solving quadratic programs is com-
paratively easy, an integral part of some algorithms for
more general nonlinear optimization problems, such as
the sequential quadratic programming methods, is to
repeatedly solve quadratic programs that are derived as
approximations for the more general problem.

4.4 The logarithmic barrier method
Logarithmic barrier methods are a particular type of
interior-point methods for the solution of nonlinear
optimization problems. We illustrate the basic idea of
these methods for an inequality-constrained minimization
problem.

min
x2Rn

f ðxÞ

s:t: giðxÞ � 0 i 2 I:

Table 6 Solutions x�(m) for large m

m xn1ðmÞ xn2ðmÞ xn3ðmÞ

1 0.78547 0.30659 0.26008

10 0.42484 0.35361 0.36870

100 0.21880 0.37632 0.42571

1000 0.18852 0.37962 0.43403

10000 0.18535 0.37996 0.43490

N 0.185 0.38 0.435
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We can combine the objective function and the constraints
and define a penalty function for this optimization
problem by

Pðx; mÞ ¼ f ðxÞ � m
X
i2I

ln giðxÞ,

where m40 is called the barrier parameter and the
expression

P
i2I ln giðxÞ is called a logarithmic barrier

function. Each logarithmic term �ln gi(x) tends to infin-
ity as x approaches the boundary given by giðxÞ � 0 from
the interior of the feasible region. This effect of the log-
arithmic terms will decrease as the barrier parameter m
becomes smaller. The idea of the logarithmic barrier
method is now to let the parameter m converge to zero.
Under some conditions the optimal solution x�(m) of the
unconstrained optimization problem minx2RnPðx; mÞ
converges to the optimal solution of the original con-
strained optimization problem as m tends to zero. Note
that the logarithm ensures that gi(x

�(m))40 for all m40,
that is, the solution to the unconstrained minimization
problem is in the strict interior of the original constraints.
This property represents a crucial distinction between this
variant of an interior-point method and an active-set
method such as the simplex method, which always tracks
the set of binding constraints at a given iterate.

Observe that the first-order conditions for the penalty
function problem are given by

rxPðx; mÞ ¼ rf ðxÞ �
X
i2I

m
giðxÞ

rgiðxÞ ¼ 0.

Now define for all iAI

niðmÞ :¼
m

giðxÞ
.

Note that since m40 by definition we have that ni(m)>0.
Thus, at a stationary point of the penalty function the
following conditions hold.

rf ðxÞ �
X
i2I

nirgiðxÞ ¼ 0

giðxÞ � si ¼ 0 for all i 2 I

nisi ¼ m for all i 2 I

ni40 for all i 2 I

si40 for all i 2 I.

This set of conditions is just the primal-dual interior-
point conditions for our original problem. We see that
conditions (13)–(17) are just the specialization of these
conditions for the linear programming model. And just
like in the illustration of the section 4.2 we are interested
in taking the parameter m to zero. Unfortunately we do
not have the space here to properly state a formal the-
orem. To make a long story short, under a few additional
technical conditions, most notably second-order

conditions of optimality, the following statements hold
for a local solution x� at which the KKT conditions are
satisfied for some Lagrange multipliers n�.

1. The local minimizer x�(m) of P(x;m) in some neigh-
bourhood of x� with limm#0x

nðmÞ ¼ xn uniquely
defines a continuously differentiable vector function
x�(m) for all sufficiently small m.

2. The function x�(m) yields Lagrange multipliers n(m)
satisfying limm#0nðmÞ ¼ nn where n�gi(x

�)=0.

An algorithm for solving the constrained problem is
apparent now. For a given value of m solve the uncon-
strained optimization problem with the objective function
P. Then reduce m stepwise to zero and follow the path of
solutions x�(m). In the limit we can find the local solution
x� of the original problem. While this approach works in
principle, it entails various difficulties. For example, the
Hessian matrix of P becomes ill-conditioned for small
values of m. For this and many other technical issues see
Gould and Leyffer (2002). Here we just illustrate the
fundamental idea with an example.

Example 8 We revisit the consumer’s utility maximizat-
ion problem from Example 3 once again. The consumer
has a utility function uðx1; x2; x3Þ ¼

ffiffiffiffiffi
x1

p þ 2
ffiffiffiffiffi
x2

p þ 3
ffiffiffiffiffi
x3

p
over three goods and faces the budget constraint
x1 þ x2 þ x3 � 1. We formulate the consumer’s problem
as the constrained minimization problem

min
x1;x2;x3

� ffiffiffiffiffi
x1

p þ 2
ffiffiffiffiffi
x2

p þ 3
ffiffiffiffiffi
x3

p� �
s:t: 1 � x1 � x2 � x3 � 0:

The unconstrained function including a logarithmic bar-
rier function for this minimization problem is

Pðx1; x2; x3; mÞ ¼ � ffiffiffiffiffi
x1

p þ 2
ffiffiffiffiffi
x2

p þ 3
ffiffiffiffiffi
x3

pð Þ
� m ln ð1 � x1 � x2 � x3Þ.

Table 7 displays solutions to this unconstrained problem
for a few values of m. Note that as m-0 the optimal
solution approaches the optimal solution of the original
utility maximization problem.

In all our examples so far we ignored the sign restriction
of the variables. We could do that since the utility func-
tions exhibit an Inada property, that is, limxi!0

@u
@xi

¼ þN,
and so we hope that a solver starting at a strictly positive

Table 7 Solutions x�(m) for small m

m xn1ðmÞ xn2ðmÞ xn3ðmÞ

1 0.0421124 0.168450 0.379012

0.5 0.0547198 0.218879 0.492478

0.1 0.0677112 0.270845 0.609401

0.01 0.0710478 0.284191 0.639430

0.005 0.0712379 0.284952 0.641141
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solution will only iterate through such solutions (although
we have to be careful in practice). But, of course, we can
easily take the non-negativity constraints explicitly into
account and consider the following problem.

min
x1;x2;x3

� ffiffiffiffiffi
x1

p þ 2
ffiffiffiffiffi
x2

p þ 3
ffiffiffiffiffi
x3

p� �
s:t: 1 � x1 � x2 � x3 � 0

x1 � 0

x2 � 0

x3 � 0

Note that the condition (LICQ) is always satisfied since
not all four constraints can be satisfied simultaneously. As
long as three constraints are binding (LICQ) holds. The
unconstrained function including a logarithmic barrier
function for this minimization problem is

Pðx1; x2; x3; mÞ ¼ � ffiffiffiffiffi
x1

p þ 2
ffiffiffiffiffi
x2

p þ 3
ffiffiffiffiffi
x3

pð Þ
� mðlnð1 � x1 � x2 � x3Þ
þ lnðx1Þ þ lnðx2Þ þ lnðx3ÞÞ.

Table 8 displays solutions to this unconstrained problem
for a few values of m. Again we observe that x�(m)-x� as
m-0. &

Strangely enough, some of the modern and best inte-
rior-point algorithms are based on work predating Kar-
markar (1984). For example, Frisch (1955) had already
proposed an interior-point method based on logarithmic
barrier functions for solving linear programs. A full early
history with many results on barrier functions is Fiacco
and McCormick (1968).

4.5 Sequential quadratic programming
Sequential quadratic programming (SQP) methods are
among the most effective constrained optimization tech-
niques, particularly when nonlinear constraints are
present. These algorithms belong to the class of active-
set methods that keep track of the binding constraints at
each step. For a description of the basic ideas we consider
a minimization problem with only equality constraints.
(But these methods are much more widely applicable.)

min
x2Rn

f ðxÞ s:t: hjðxÞ ¼ 0; j 2 E.

(18)

The KKT conditions for this problem are as follows.

rf ðxÞ �
X
j2E

ljrhjðxÞ ¼ 0; (19)

hjðxÞ ¼ 0; j 2 E: (20)

These conditions are a system of n+m nonlinear equa-
tions in the n variables x and the m Lagrange multipliers
l. Newton’s method for solving nonlinear equations is
now a natural approach for solving this system. The
Jacobian of the left-hand side of the system (19)–(20) is
given by

HðxÞ �
P
j2E

ljHjðxÞ �AðxÞ>

AðxÞ 0

24 35,

where the matrix AðxÞ> ¼ ½rh1ðxÞ; . . . ;rhJðxÞ� is the
collection of the gradient vectors of all constraints
hðxÞ ¼ ðhjðxÞÞj2E¼f1;2;...;Jg. The matrix Hj(x) denotes the
Hessian matrix of the constraint function hj at the point
x. For a given point (x(k),l(k)) the Newton step is then
determined by the linear system

HðxðkÞÞ �
P
j2E

lðkÞj HjðxðkÞÞ �AðxðkÞÞ>

AðxðkÞÞ 0

264
375 sðkÞx

s
ðkÞ
l

24 35

¼ �
rf ðxðkÞÞ �

P
j2E

lðkÞj rhjðxðkÞÞ

hðxðkÞÞ

264
375

resulting in the new iterate ðxðkþ1Þ; lðkþ1ÞÞ ¼ ðxðkÞþ
sðkÞx ; lðkÞ þ s

ðkÞ
l Þ. Note that this last system is equivalent to

the following linear system.

HðxðkÞÞ �
P
j2E

lðkÞj HjðxðkÞÞ AðxðkÞÞ>

AðxðkÞÞ 0

264
375 sðkÞx

�lðkþ1Þ

" #

¼ �
rf ðxðkÞÞ

hðxðkÞÞ

" #
(21)

Now consider the following quadratic optimization
problem (QP).

min
s2Rn

1
2 s

> HðxÞ �
P
j2E

ljHjðxÞ
 !

sþrf >ðxÞs

s:t: AðxÞsþ hðxÞ ¼ 0

The left-hand side of the constraints are a first-order
(Taylor) approximation of the constraint function h of the
original optimization problem. The objective function of

Table 8 Solutions x�(m) for small m

m xn1ðmÞ xn2ðmÞ xn3ðmÞ

1 0.219696 0.270563 0.331757

0.5 0.195664 0.278956 0.389721

0.1 0.124696 0.286370 0.543846

0.01 0.0789861 0.285758 0.630009

0.005 0.0753165 0.285727 0.636309
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(QP) is a second-order approximation of the difference
f(x+ s)�f(x). The KKT conditions for the problem (QP)
are as follows.

HðxÞ �
X
j2E

ljHjðxÞ
 !

s

þrf ðxÞ � ATðxÞn ¼ 0

(22)

AðxÞsþ hðxÞ ¼ 0 (23)

Observe that these KKT conditions at a point (x(k), l(k))
are equivalent to (21). Solving the first-order conditions
of the original optimization problem with Newton’s
method is, under some technical conditions, equivalent to
solving the quadratic optimization problem (QP). A
Newton step at a given point (x(k), l(k)) is the same as
solving the (QP) at this point. The idea of SQP methods
is now to repeatedly solve this quadratic problem to gen-
erate a sequence of iterates that converges to a local solu-
tion of the original problem. Various good methods for
solving quadratic optimization problems exist and can be
applied to the problem (QP). Moreover, when combined
with line search or trust region methods the approach has
useful global convergence properties. Gould and Leyffer
(2002) and Nocedal and Wright (2006) discuss details of
line search and trust region SQP methods.

5 Global optimization
We emphasized repeatedly that most practical algorithms
for solving nonlinear optimization problems search for a
solution only to the (necessary) first-order conditions,
that is, they search for a local solution. Unless we are
solving a convex programming problem or an uncon-
strained minimization problem of a convex function, we
often cannot be sure that a computed local solution is
indeed an approximate solution to the problem at hand;
recall Example 2. Only occasionally other additional
knowledge, perhaps some particular property of an
underlying economic model, may assure us that we
found an optimal solution. Obviously it would be helpful
to have methods for general non-convex problems that
may not, or are at least less likely to, get stuck in only
locally optimal solutions. Here we lay out two approaches
for global optimization. We describe the basic ideas of
some popular metaheuristics and, subsequently, the very
promising area of research in polynomial optimization,
which is likely going to produce powerful tools for eco-
nomic problems.

5.1 Metaheuristics
Metaheuristics provide a general framework and basic
guidelines for developing specific heuristics for solving
optimization problems. While the underlying principles
are very general, typically a method must be carefully
tailored in order to obtain an effective algorithm for the

special problem at hand. Most metaheuristics were orig-
inally developed for solving discrete optimization prob-
lems, such as integer or combinatorial problems. Their
principal ideas can also be applied to come up with heu-
ristics for continuous nonlinear optimization problems.

The central problem of most nonlinear optimization
methods is the possibility of getting stuck at a locally
optimal solution. Many methods allow only for iterative
steps that lead to an improvement in the objective func-
tion value, but, for an exception, see the discussion on
nonmonotone techniques in Conn, Gould and Toint
(2000) and Nocedal and Wright (2006). Such methods
cannot get away from a locally optimal solution. In order
to escape from such a local solution we must allow our
search procedure, at least sometimes, to move into a non-
improving search directions; that is, temporarily the
objective function value of the sequence of iterates may
increase (in a minimization problem). Three metaheu-
ristics that are supposed to escape local solution are tabu
search, simulated annealing, and genetic algorithms. The
latter two methods are examples of stochastic approaches
for optimization. Here we give a description of the basic
ideas underlying these three methods and refer to
Brandimarte (2006), Judd (1998) and the citations in
those books for details.

5.1.1 Tabu search
The choice of non-improving search directions must be
carefully managed to avoid repeatedly returning to a
previously found optimal solution. Such cycling may
occur if, after a non-improving step away from a local
solution, the algorithm takes an improving step and
immediately returns to the previously found local solu-
tion. A tabu search procedure imposes at every iteration a
list of search directions that the algorithm is not allowed
to pursue. For example, if the method just took a step in
the direction s(k) then it may not be allowed to examine a
neighbourhood of search directions around � s(k) for the
next few iterations. In order to avoid memory problems
in practical implementations, the tabu list usually con-
sists only of the most recent steps taken. Of course, many
technical issues need to be addressed to obtain a robust
and efficient algorithm. The treatment of these issues
usually depends greatly on the specific problem.

5.1.2 Simulated annealing
Simulated annealing is another metaheuristic that helps
an algorithm to escape from locally optimal solutions.
Instead of choosing only iterates that decrease the objec-
tive function in a minimization problem, simulated
annealing methods also accept with some probability
new iterates that increase the objective. The probability of
accepting an iterate x(k+1) if f ðxðkþ1ÞÞ4f ðxðkÞÞ is

e�
f ðxðkþ1ÞÞ�f ðxðkÞÞ

T
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with a parameter T40. Simulated annealing methods
typically start out with a fairly large value for T and then
decrease it to 0. Observe that for large values of T the
heuristic is likely to accept non-decreasing iterates, and
so it allows the method to explore the feasible region. As
T decreases the probability of acceptance of non-decreas-
ing iterates of a fixed size also decreases. In the limit T-
0 the method allows only iterates that decrease the
objective function value. The perhaps simplest rule for
reducing T is to start from a high value T0 and then to set

Tlþ1 ¼ aTl for some 0oao1.

The basic ideas of simulated annealing are derived from
an analogy of minimization with the physical annealing
process of slowly cooling metals in order to reach a
strong low-energy solid state. This analogy motivates the
particular probability function for accepting increasing
iterates and explains why the parameter T is called the
temperature of the process. The rule of decreasing T is
analogously called the cooling schedule. The earliest
applications of simulated annealing were combinatorial
problems; see Kirkpatrick, Gelatt and Vecchi (1983) as
well as Cerny (1985).

5.1.3 Genetic algorithms
Genetic algorithms are derived from the analogy of find-
ing better and better solutions with the theory of bio-
logical evolution of selecting fitter and fitter members of
a species. As a result the literature on genetic algorithms
uses terminology from evolutionary biology. Iterates in
tabu search and simulated annealing algorithms are a
single point. Contrary to that, genetic algorithms work
with a set (‘generation’) of several current points. A
genetic algorithm constructs a sequence of such sets. In a
given iteration the objective function is evaluated at the
points in the set (‘fitness of a member’). The method
then chooses elements of the set in a probabilistic fashion
in order to build new elements for the next set. Usually
the probability of an element being chosen is the higher
the better its objective function value. Several ways to
construct new elements exist. A standard operation is the
so-called crossover. Given two elements (‘parents’) x(k)

and y(k) in the set the crossover operation leads to

xðkþ1Þ ¼ x
ðkÞ
1 ; . . . ; x

ðkÞ
l ; y

ðkÞ
lþ1; . . . ; y

ðkÞ
n

� �
,

(24)

yðkþ1Þ ¼ y
ðkÞ
1 ; . . . ; y

ðkÞ
l ; x

ðkÞ
lþ1; . . . ; x

ðkÞ
n

� �
;

(25)

where the method chooses some arbitrary break point l
in the n-dimensional vectors. The idea behind crossover
is to preserve some parts of the original elements and at
the same time generate quite arbitrarily new elements
(‘children’) that are far away from the original ones, and

thereby to escape local solution. Another type of oper-
ation aimed at achieving this goal is to randomly
exchange an element in a member x(k) by another value
(‘mutation’). While these approaches have proven useful
in combinatorial optimization, it is quite apparent that
they may run into severe difficulties for constrained
problems. Many technical details must, therefore, be
resolved before these ideas yield a useful heuristic
approach for solving an optimization problem.

The monograph by Holland (1975) popularized
genetic algorithms. The basic ideas of computer simu-
lations of evolution are much older.

Any heuristic method derived from a metaheuristic
will always be an ad hoc approach to the problem at
hand. Just like the standard methods of nonlinear opti-
mization presented in this article, they are not guaran-
teed to find the solution of a problem. And, while such
heuristics have proven useful in discrete optimization,
they are generally regarded as inferior to the modern
standard optimization techniques for continuous opti-
mization. An economist’s first choice of a solution
method for a continuous optimization problem, partic-
ularly when nonlinear constraints are present, should
always be one of the standard methods.

5.2 Polynomial functions
A substantial number of prominent economic models
involves only polynomial functions, equations or inequa-
lities. Even problems that at first appear to be non-
polynomial can sometimes be transformed into having
only polynomial expression. For example, the first-order
conditions for the standard log-utility maximization
problem

max
x2Rn

Xn
i¼1

lnðxiÞ

s:t:
Xn
i¼1

piðxi � oiÞ ¼ 0

for prices pi and endowments oi, i=1,y, n, can be
written in polynomial form,

1 � lpixi ¼ 0; i 2 f1; . . . ; ng, (26)

Xn
i¼1

piðxi � oiÞ ¼ 0; (27)

where l denotes the Lagrange multiplier. Polynomial
functions and equations can be analysed using tools from
computational algebraic geometry (Cox, Little and
O’Shea, 1997). Global optimization with polynomials is
an active field of research in mathematics; see, for exam-
ple Lasserre (2001), Parrilo and Sturmfels (2003), and the
book by Sturmfels (2002) and the citations therein. It is
possible (at least in theory) to compute all local minima
of polynomial functions. Similarly, it is possible to
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compute all solutions to a polynomial system of equa-
tions. With further expected advances in the theory of
polynomial optimization and ever increasing speed of
modern computers, these tools will soon have an impact
in economics. For first results see COMPUTATION OF GENERAL

EQUILIBRIA (NEW DEVELOPMENTS).

6 Popular optimization software in economics
This section covers software packages and modelling
languages that are frequently used in economics to solve
optimization problems. This list is by no means exhaus-
tive, and many other software products for solving opti-
mization problems exist.

Perhaps the most popular software for numerical work
in economics is MATLAB (MATLAB is a registered
trademark of The MathWorks, Inc.). Computational
economics and finance textbooks such as Brandimarte
(2006), Kendrick, Mercado and Amman (2006) and
Miranda and Fackler (2002) use MATLAB to solve eco-
nomic problems. Other popular packages include GAUSS
(GAUSS is a registered trademark of Aptech Systems,
Inc.) and Mathematica (Mathematica is a registered
trademark of Wolfram Research, Inc.) All three languages
offer solvers for nonlinear optimization problems, which
are continuously enhanced to solve larger and more
difficult problems. Here we just list a few features of these
software packages.

MATLAB has an optimization toolbox containing
routines for solving both unconstrained and constrained
nonlinear optimization problems. Methods for uncon-
strained problems include quasi-Newton and trust region
techniques. The solvers for constrained optimization
include an SQP method. MATLAB also has specialized
methods for nonlinear least square problems; however,
most of these solvers are considered to be of only medi-
ocre quality. Much better solvers in MATLAB are avail-
able through the NAG toolbox (NAG is a registered
trademark of The Numerical Algorithms Group, Inc.)
The NAG Foundation Toolbox provides access to the
large set of numerical routines contained in the Fortran-
based NAG Foundation Library, which contains routines
for constrained and unconstrained optimization.

The high-level matrix programming language GAUSS
includes an applications module for constrained opti-
mization that uses an SQP method in conjunction with
several line search methods or a trust region method.
GAUSS has some specialized modules for constrained
maximum likelihood problems. For Mathematica there
exists a global optimization package, which contains
various functions for optimization. These functions are
designed to search for global optima for problems
with hundreds of variables. The monograph by Bhatti
(2000) comes with an optimization toolbox for Mathe-
matica that includes all the methods presented in this
article.

These high-level languages are popular in economics
because they are easy to learn and quickly facilitate solv-
ing problems of moderate size. For larger problems with
thousands or even hundreds of thousands of variables,
however, they are not reliable and certainly too slow.
Economists interested in solving large problems need to
use alternative software. An excellent alternative is the use
of algebraic modelling languages.

The General Algebraic Modeling System (GAMS) is a
high-level modelling language designed for mathematical
programming and optimization; see Rosenthal (2006) for
a user’s guide. GAMS consists of a language compiler and
a family of integrated high-performance solvers. GAMS is
tailored for complex, large-scale modelling applications,
and allows the user to build large models. It has a long
history of successful applications in economics, particu-
larly in solving large-scale computable general equilib-
rium (CGE) models. AMPL (Fourer, Gay and Kernighan,
2003) is an algebraic modelling language for mathemat-
ical programming, which allows users to set up and solve
a great variety of optimization problems. The user has
access to many popular and sophisticated solvers.

An exciting environment for solving optimization
problems is the Network-Enabled Optimization System
(NEOS); see Czyzyk, Mesnierand and Moré (1998) and
Ferris, Mesnier and Moré (2000). NEOS is an optimiza-
tion site that allows users to submit optimization prob-
lems over the Internet. The user does not need to
download any solver but can just send optimization
problems to NEOS and choose from a list of solvers.
NEOS has access to many of the most current and pow-
erful optimization routines. NEOS returns a solution and
some runtime statistics to the user. Unfortunately, NEOS
has been largely ignored by many economists.

7 Mathematical programs with equilibrium
constraints
Mathematical programs with equilibrium constraints
(MPECs) are currently at the frontier of numerical anal-
ysis. Economic models that can be classified as ‘leader-
follower’ games are examples of MPECs. Suppose that the
economic variables can be partitioned into x, those cho-
sen by the ‘leader’ (government, employer, market maker,
mechanism designer, and so on), and y, those chosen by
the ‘followers’ (taxpayers, employees, traders, and so on)
or determined in equilibrium (such as price). Suppose
that the leader’s payoff is f(x,y) and that the equilibrium
value y given x is represented by a combination of ine-
quality conditions, c(x,y) Z 0, and complementarity
constraints, 0 � y ? Fðx; yÞ � 0, where 0 � y ? Fðx; yÞ
� 0 if and only if 0 r y, F(x, y) Z 0, and yTF(x,y) = 0.
Equality constraints can be added without difficulty. The
constraints correspond to, for example, budget and incen-
tive constraints, and the complementarity constraints
model the optimality conditions of the followers including
any Lagrange multipliers. Then the leader’s problem and
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the corresponding equilibrium are given by the solution
to the MPEC

max
x;y

f ðx; yÞ

s:t: cðx; yÞ � 0

0 � y ? Fðx; yÞ � 0:

MPECs present many mathematical challenges; the con-
straints are non-convex and reformulations as standard
nonlinear optimization problems violate fundamental
stability assumptions. Despite these facts, nonlinear opti-
mization methods applied to such reformulations have
been successful at solving some MPECs. For example,
Chen et al. (2006) solve MPECs derived from some large-
scale electricity market models. But they also show the
limitations of the nonlinear optimization approach, and
advocate the development of robust algorithms for solv-
ing MPECs that directly exploit the structure of the
complementarity constraints. The development of such
methods is under way. The ability to solve large and
complicated MPECs will greatly enhance economic mod-
elling in many areas and will likely make MPECs a key
tool of computational economic analysis in the future.

KARL SCHMEDDERS

See also computation of general equilibria; computation of

general equilibria (new developments); computational meth-

ods in econometrics; dynamic programming; linear program-

ming; nonlinear programming; operations research; simplex

method for solving linear programs.

I am grateful for helpful discussions with Sven Leyffer and am indebted

to Ken Judd, Annette Krauss, and in particular Che-Lin Su for detailed

comments on earlier drafts. I also thank the editors Larry Blume and

Steven Durlauf for a careful review of my initial submission.

Bibliography

Allgower, E.L. and Georg, K. 1979. Introduction to
Numerical Continuation Methods. New York: John
Wiley & Sons. Reprinted by SIAM Publications,
2003.

Bhatti, M.A. 2000. Practical Optimization Methods: With
Mathematica Applications. New York: Springer-Verlag.

Brandimarte, P. 2006. Numerical Methods in Finance and
Economics: A MATLAB-Based Introduction. New York:
John Wiley & Sons.

Cerny, V. 1985. A thermodynamical approach to the
traveling salesman problem: an efficient simulation
algorithm. Journal of Optimization Theory and
Applications 45, 41–51.

Chen, Y., Hobbs, B.F., Leyffer, S. and Munson, T.S. 2006.
Leader–follower equilibria for electric power and NOx

allowances markets. Computational Management Science
4, 307–30.

Conn, A.R., Gould, N.I.M. and Toint, P.L. 2000. Trust-
Region Methods. Philadelphia: SIAM.

Cox, D., Little, J. and O’Shea, D. 1997. Ideals, Varieties, and
Algorithms: An Introduction to Computational Algebraic
Geometry and Commutative Algebra. New York: Springer-
Verlag.

Czyzyk, J., Mesnier, M.P. and Morè, J. 1998. The NEOS
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Nurkse, Ragnar (1907–1959)
Nurkse was born on 5 October 1907 on an estate where
his father was an overseer, near the village of Viru in
Estonia. His father was Estonian and his mother of
Swedish origin. Ragnar Nurkse was educated in Tallinn,
Tartu, Edinburgh and Vienna. From 1934 to 1945 he
worked as an economist with the League of Nations and
from 1945 until his death he was a professor at Columbia
University. He wrote on international currency questions,
trade, vicious circles of poverty and on balanced growth.
In 1959 he delivered the Wicksell Lectures in Stockholm.
Exhausted by the lectures, he went to Geneva and while
taking a stroll on Mont Pèlerin he collapsed and died of a
heart attack or stroke on 6 May 1959. The Wicksell Lec-
tures were published posthumously (Nurkse, 1961).

One of Nurkse’s two most important books was Inter-
national Currency Experience: Lessons of the Inter-War
Period (1944). It was published by the League of Nations,
and though it did not carry the name of any author, this
was (excepting chapter 6) the work of Nurkse. From this
and several other of his writings, what comes out most
clearly is Nurkse’s pragmatism. Though he was one of the
originators of the doctrine of balanced growth, he never
minimized the role of international trade. However, he
believed that the scope for trade-based expansion for
Third World countries was much less in the 20th century
than it was in the 19th century. Balanced growth could
supplement this and even enlarge the scope for trade.
Balanced growth and international trade, Nurkse argued,
‘are really friends, not enemies’ (Haberler and Stern,
1961, p. 257).

Nurkse had a deep concern for full employment. He
viewed exchange rate adjustments and trade restrictions
as legitimate measures for preventing balance of payments
difficulties from translating into unemployment and
domestic instability. He stressed that trade restrictions
ought to be used as temporary measures. With the

emergence of Keynesian macroeconomics, Nurkse came
to have faith in effective-demand management as a tool
for maintaining employment in the face of trade adver-
sities. This also led him to argue for some international
coordination of domestic policies.

Nurkse’s other important (and, in my opinion, more
important) book was Problems of Capital Formation in
Underdeveloped Countries (1953). Here he developed the
important idea that though the producer of each com-
modity may find an expansion unprofitable because of
limitations of the market, a coordinated expansion of all
productive activities could be profitable for all producers.
Hence, atomistic behaviour on the part of producers
could trap an economy within its production possibility
frontier. This idea had been discussed earlier – most
notably by Rosenstein-Rodan (1943) and more distantly
by Young (1928) – but Nurkse took it further. While this
work has been the basis of several debates in develop-
ment economics (for critiques and formalizations, see
Flemming, 1955; Findlay, 1959), it has the scope for fur-
ther research, especially in the light of recent advances in
non-Walrasian equilibrium analysis (see Basu, 1984).

The lack of formalization in Nurkse’s work led to
much misunderstanding – handsomely contributed to by
Nurkse himself – about the policy implications of the
poverty-trap doctrine. Nurkse tried to clarify these in his
Ankara lectures in 1957 and his posthumously published
note in Oxford Economic Papers (1959), both reprinted in
Haberler and Stern’s (1961) collection. The potential of
this branch of development economics remains large.

KAUSHIK BASU

See also balanced growth.
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